
Master’s Thesis

Design and Implementation of a File Recommendation
System Using Collaborative Filtering and Content-Based

Recommendation for the Nextcloud Platform

Author:
Doğan Can Uçar

Frankfurt University of Applied Sciences
Frankfurt am Main, March 22, 2018

Matriculation number:
Degree program: Barrierefreie Systeme - Intelligente Systeme (M.Sc.)
1st Supervisor: Prof. Dr. Jörg Schäfer
2nd Supervisor: Prof. Dr. Eicke Godehardt

Ji bo her kesên kû dixwestin cîhanê bikin cîhekî baştir ...

For those who wanted to make the world a better place ...

Declaration of Authorship

I hereby declare that the paper presented is my own work and that I have not called upon the
help of a third party. In addition, I affirm that neither I nor anybody else has submitted this
paper or parts of it to obtain credits elsewhere before. I have clearly marked and acknowledged
all quotations or references that have been taken from the works of others. All secondary
literature and other sources are marked and listed in the bibliography. The same applies to all
charts, diagrams and illustrations as well as to all Internet resources. Moreover, I consent to my
paper being electronically stored and sent anonymously in order to be checked for plagiarism. I
am aware that the paper cannot be evaluated and may be graded ”failed” (”nicht ausreichend”)
if the declaration is not made.

Frankfurt, March 22, 2018 .

Acknowledgement

Submitting this masters thesis finishes a chapter in my life. From the very beginning of my life
at university, one of my goals was to contribute to the community. The following work is a
chance to achieve this goal by contributing to an open source project.

I would like to thank my thesis advisors Prof. Dr. Jörg Schäfer and Prof. Dr. Eicke Godehardt
at Frankfurt University of Applied Sciences, who have provided an excellent support during this
work. Prof. Dr. Schäfer and Prof. Dr. Eicke Godehardt always had the right answer whenever
a question about my research occured to me.

My special thanks are addressed to Mr. Frank Karlitschek, Managing Director at Nextcloud
GmbH, Joas Schilling, Björn Schießle, Ivan Sein, Julius Härtl, Morris Jobke and Roeland Douma,
Software Engineers at Nextcloud GmbH and Mr. Jan-Christoph Borchardt, Design Lead at
Nextcloud GmbH who gave me the chance and confidence to complete this thesis under practi-
cal circumstances. Mr. Schilling, Mr. Schießle and Mr. Sein made it easy for me to get started
with the Nextcloud framework by always having the right answers. Mr. Härtl helped me to
get familiar with the Nextcloud UI development and Mr. Jobke and Mr. Douma reviewed and
helped me to increase source code quality. Mr. Borchardt had the right eye for design and
helped me to improve the UI from a simplicity and ease of use point of view.

Another supporter was Dr. Eng. Thomas Hildmann from ”Technische Universität Berlin”.
Mr. Hildmann and his entire team have supported this work by contributing information and
statistics for a better assessment about the real life usage of Nextcloud.

I would also like to express my gratitude to Isabell Meyer, who has reviewed this thesis conti-
nously. The thesis would not be in this quality without her professional help.

Finally I would like to thank my family and friends who have supported me not only dur-
ing the master’s thesis, but also during the bachelors and masters programme. Without their
help my studies would not have been possible this way.

FRANKFURT UNIVERSITY OF APPLIED SCIENCES

Abstract

Design and Implementation of a File Recommendation
System Using Collaborative Filtering and Content-Based

Recommendation for the Nextcloud Platform

Faculty of Barrierefreie Systeme - Intelligente Systeme

Master of Science

Doğan Can Uçar

In this document I will examine the idea behind the software architecture of a recommendation
system for Nextcloud. Nextcloud is an open source file sync and sharing and collaboration sys-
tem, which provides data security by self-hosting. As a fork of ownCloud, Nextcloud was founded
in 2016 and provides enterprise support for customers like TU Berlin, Wikimedia Deutschland,
Atlassian Confluence, University of Minnesota, Bundeszentrale für politische Bildung and Bun-
desministerium für Arbeit und Soziales. The goal of the resulting recommendation system is a
better user experience in daily work with Nextcloud.

The recommendation system is based on ”Collaborative Filtering”, a technique which helps
to find (common) interests of users. In addition to that the system uses ”Content-Based
Recommendation” to analyze the content of items and use it as a similarity metric for rec-
ommendations. The combination of Memory-Based Collaborative Filtering and Content-Based
Recommendation is called ”hybridization” and represents the final step of the recommendation
system.

Several challenges were to overcome in the development of such a recommendation system.
First, the system had to be implemented as a Nextcloud App and therefore had to work within
the boundaries provided by Nextcloud. In addition, there were known limitations in processing
large amounts of data with PHP. Moreover, there are no official APIs or libraries for Collab-
orative Filtering and Content-Based Recommendation which is also a challenge to overcome.
And finally, it is still not possible to centrally train the recommendation system, as it is usual
for Machine Learning systems, due to the philosophy of Nextcloud being ”a safe home for all
your data”.

The result of this thesis is a Nextcloud app that represents a recommendation system. The app
is released on GitHub under the AGPLv3 and it is planned to release the app on the Nextcloud
App Store.
The App ist structured in two parts: the first part, that declines the main part of the recom-
mendation system, is a background job. The second part is the integration in the Nextcloud
UI that reads and displays the results of the first part.

This document is primarily intended for the open source community, people who want to
make the world a better place and to all those who are interested in machine learning topics.
Therefore, I have tried to use open source tools wherever I had the chance to.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 3
1.3 Objectives of this Work . 3
1.4 Scientific Context . 4
1.5 About Nextcloud . 4
1.6 Accessibility . 4
1.7 Outline . 5

2 Requirements Analysis 6
2.1 Problem Definition . 6
2.2 General Conditions . 7
2.3 Milestones . 9
2.4 Functional Requirements . 9

2.4.1 Relation to Machine Learning . 9
2.4.2 Input & Output . 9
2.4.3 Data Processing . 9
2.4.4 Recommendations . 10

2.5 Non-Functional Requirements . 10
2.5.1 Software Quality . 10
2.5.2 Privacy and Legal Aspects . 10
2.5.3 Performance . 10
2.5.4 Usability . 10
2.5.5 Portability . 11
2.5.6 Supportability . 11
2.5.7 Extensibility . 11
2.5.8 Transparency . 11

2.6 Requirements Matrix . 11
2.7 Software Architecture and Design . 13

2.7.1 Nextcloud Architecture . 13
2.7.2 Nextcloud App Architecture . 15

6

3 State of the Art 17
3.1 Introduction . 17
3.2 Collaborative Filtering . 18

3.2.1 Introduction . 18
3.2.2 Formal Definition . 19
3.2.3 Memory-Based Collaborative Filtering 20
3.2.4 Model-Based Collaborative Filtering 22

3.3 Content-Based Recommendation . 23
3.3.1 Introduction . 23
3.3.2 Formal Definition . 24
3.3.3 Stopword Removal and Stemming . 24
3.3.4 Degree of Match . 25

3.4 Other Filtering Techniques . 26
3.4.1 Kowledge-Based Filtering . 26
3.4.2 Demographic Filtering . 26

3.5 Hybridization . 27
3.5.1 Weighted Average . 27
3.5.2 Switching . 27
3.5.3 Mixing . 27
3.5.4 Feature Combination . 28
3.5.5 Cascading . 28
3.5.6 Model Using . 28
3.5.7 Monolithic . 28
3.5.8 Pipelining . 28

3.6 Reasons for Methods Chosen . 28
3.6.1 Collaborative Filtering . 29
3.6.2 Content-Based Recommendation . 29
3.6.3 Hybridization . 31

4 Implementation 32
4.1 Introduction . 32
4.2 General App Architecture . 33

4.2.1 PSR-4 Autoloading . 33
4.2.2 Dependency Injection . 33

4.3 Nextcloud App Architecture . 34
4.4 RecommenderJob . 35

4.4.1 TimedJob . 35
4.4.2 RecommenderService . 36
4.4.3 Reading File Content . 38
4.4.4 Favorites . 39
4.4.5 TU Berlin Statistics . 39
4.4.6 Item . 40
4.4.7 ItemList . 40

4.4.8 Keyword . 41
4.4.9 KeywordList . 41
4.4.10 HybridItem . 42
4.4.11 HybridList . 42
4.4.12 Interface IComputable . 42
4.4.13 Interface IContentReader . 43

4.5 Collaborative Filtering Implementation . 43
4.5.1 User Ratings . 43
4.5.2 CosineComputer . 44

4.6 Content-Based Recommendation Implementation 46
4.6.1 User Profile . 47
4.6.2 Reading File Content . 48
4.6.3 Term Frequency / Inverse Document Frequency 50
4.6.4 OverlapCoefficientComputer . 52

4.7 Hybridization . 53
4.7.1 HybridItem . 53
4.7.2 HybridList . 55

4.8 Database Storage . 56
4.8.1 Doctrine Framework . 56
4.8.2 Table Creation and Access . 56

5 Evaluation 60
5.1 Introduction . 60

5.1.1 Test Environment . 61
5.2 Evaluation Based on Static Tags . 63
5.3 Evaluation Based on Modifications Timestamps 67

5.3.1 Content Based Recommendation . 67
5.3.2 Collaborative Filtering . 68

5.4 Graphical User Interface . 71
5.5 Defining Weights and Thresholds . 72

5.5.1 Threshold . 73
5.5.2 Weights . 73

6 Relation to Accessibility 74
6.1 Introduction . 74
6.2 Recommender Systems in the Context of Accessiblity 74

7 Conclusion 76
7.1 Summary . 76
7.2 Results . 76
7.3 Future Work . 77

Chapter 1

Introduction

1.1 Background
Artificial Intelligence (AI) is hyped nowadays. It is a broadly arranged field, allowing applica-
tions to be created for different purposes. AI finds its way to laptops, smartphones and even
to the ”smart home”, where each device is connected to the Internet and can make decisions
autonomously. This hype arouses a lot of questions from the people who are confronted with
it. What does ”intelligence” mean and how can a computer be enabled to ”learn”? What are
the advantages in relation to ”conventional” software? How does it affect everyday life, when
each ”object” in our environment is equipped with these techniques?

AI enables new fields of application which help people, companies and even devices to han-
dle everyday life, reduce costs and optimize repetetive tasks. While conventional systems -
systems that work according to an algorithm - are developed for a defined use-case, AI-based
systems allow the adaption to a situation and learn over time. Even if commercial software is
designed to be flexible and provides a wide use case, it is not able to adapt to the situation or
the user without AI. This leads to the fact that users often adapt their goals to the software or
create workarounds to reach their goals. Another consequence is, that the user gets used to a
sequence of actions and does not elaborate new ones. AI based systems can learn the behaviour
of a user and simply make suggestions to make the work easier.

In an analog world people trust in their innate likes and tastes or follow those of a person
who is trusted in. So when people go to buy new things they base their choices on those tastes
or recommendations. The challenge begins here: are there similar items related to this one?
Could I have a better or cheaper one? Does other shops offer similar or better items?
Even though it is possible to browse all the stores and base decisions on the information that is
gathered from all the possibilities, in general it does not happen, because for most people the
cost-benefit ratio of these activities does not make it worth to go through all the trouble.

1

Master’s Thesis Doğan Can Uçar

In the age of Internet where the selection seems to be endless, it is not only common but also
impossible to inspect each item and select the best. Trying this would literally mean searching
for a needle in a haystack. But what should the discovery of new, yet unknown, but also taste
matching items look like? [Lev14]

Recommendation Systems

Luckily, this problem has been faced in early stages of Web 2.0. Online shops for instance have
elaborated algorithms that either learn our tastes or measure the similarity between an item
that we have rated earlier and is unknown to us. Amazon.com was one of the first platforms
that has provided a ”recommendation system”. We are all familiar with the ”customer who
bought X have also bought Y” when we want to buy something at Amazon.com [Lev14].

A common way to create such a recommendation system is ”Collaborative Filtering”. There
are several approaches and classifications of Collaborative Filtering1. The main idea of these
techniques is to suggest items to a specific user that are unrated and unknown by him/her, but
correspond to his tastes. Moreover, a user can get ”similar” and not yet rated items recom-
mended when the user has a common rated item base with other users.

In addition to Collaborative Filtering, there is also ”Content-Based Recommendation” that
can be used to create a recommendation system. Content-Based Recommendation may use
the properties of an item to measure similarity. The main difference to Collaborative Filtering
is that Content-Based Recommendation does not require a relation to other users [Kla09].

Both approaches have their advantages and disadvantages, which make a combination of both
useful, which is known as hybridization [Kla09].

Recommendation systems can be traced back to the 1980s. One of the first Content-Based
Recommendation approaches, ”The Information Lense”, was described in [MGT86]. Lense was
developed as a ”intelligent system that helps people share and filter information communicated
by computer-based messaging systems”. GroupLens was one of the earliest Collaborative Fil-
tering projects describing ”a system to help people find articles they will like” [PR94].
Today almost every online shop or community has a recommendation system integrated, which
aims to learn the user’s taste and provides them the best item as a recommendation.
But recommendation systems are not limited to shops. There are several services which already
integrate recommendation systems to recommend news, music, books, posts, persons etc. to
create a personal profile [Lev14].

1Details are described in State of the Art.

2

Master’s Thesis Doğan Can Uçar

1.2 Motivation
The increasing amount of ”intelligent agents” which make it easier to complete tasks or dis-
cover new items are an omnipresent reality in recent history. While computers made it easy to
”compute” algorithms, the newer technologies in the area of AI will help organizing everyday
life, find out customer’s interests and predict possibilities of events2.

During the masters programme I got familiar with various topics in the area of AI in a number
of projects. In the ”Wissen 1: Grundlagen adaptiver Wissenssysteme” course I have seen a
software agent that learned to play the game ”Schlag den Raab” autonomously. In ”Wissen
2: Adaptive Wissenssysteme mit Gedächtnis und Symbolgebrauch” the students got to know
a software system that was able to measure the similarity of two items using ”Cased Based
Reasoning” and in ”Spracherkennung und -synthese” I had the chance to see how the music
identifying service ”Shazam” compares music frequencies in order to measure similarity.
We have addressed these topics in the context of accessibility (Barrierefreiheit). But is there a
way that these techniques and methods may help physically or cognitively handicapped people?
Is it possible to facilitate their lifes or help them do things, which were inconceivable in their
past?

The recommendation system for Nextcloud, which is the subject of this thesis, is designed
to help people sense fewer impulses, such as notifications, emails or entries in an activity feed.
This motivation matches that of open source to be helpful to other people.
In that point the goals of an open source software like Nextcloud and the goals of my masters
programme meet each other: making a contribution to the community.

1.3 Objectives of this Work
The goal of this thesis is to create a Nextcloud app that works as a recommendation system
using Collaborative Filtering and Content-Based Recommendation. The app should work as an
assistant, that recommends files if they are appropriate for the user.
The recommendation system aims a better overview about uploaded files. Thinking about a
company’s Nextcloud, where files are uploaded or deleted nearly every hour, users are overrun
with new notifications. But in most of the cases, people are not interested in every file and
therefore, the notification is nothing more then disturbance. For instance, a software developer
does not usually care about files from the sales department and the recommendation system
may help to reduce the notifications so that the users do not feel overrun.
The recommendation system consists of Collaborative Filtering and Content-Based Recommen-
dation techniques. The results of these techniques are combined in a final ”hybridization” step.
This step can be reached with different methods as described in Hybridization.

2Example: doing X will led to Y.

3

Master’s Thesis Doğan Can Uçar

1.4 Scientific Context
Recommendation systems are part of Information Retrieval particularly of Information Filtering
and are developed for a better orientation within the exponential growth of data. Recommen-
dation systems are also a part of Machine Learning since they ”learn” user preferences and
behave accordingly.
Recommendation systems can also benefit from Natural Language Processing to analyze the
content of items [Lev14].

1.5 About Nextcloud
Nextcloud is an open source file hosting software that has functionality similar to Google Drive
or Dropbox. The software provides the usage of file sharing and editing on a self-hosted server.
Nextcloud also offers contacts and calendar management within the platform. Several apps
on the Nextcloud App Store are available from third party developers which extend the core
functionality.
Nextcloud also offers synchronization via CardDAV, CalDAV and WebDAV in order to provide
contacts, calendar and files on end devices.

Nextcloud GmbH, the company behind the software, was founded by many core developers
from ownCloud. As a fork of ownCloud, Nextcloud differs from its predecessor in that it is
completly open source. Nextcloud provides just one software, intended for the community and
as an enterprise edition. Both versions have almost the same functionality. Nextcloud also does
not require a Contributor License Agreement, which means, that the source code remains the
property of the developers.
Frank Karlitschek, founder and managing director of Nextcloud, has described the differences
for contributers, users, customers and partners and employees in an announcement on his blog3.

1.6 Accessibility
The masters programme ”Barrierefreie Systeme / Intelligente Systeme” at Frankfurt University
of Applied Sciences focuses on accessible systems from the perspective of computer science.
Moreover, the interdisciplinary structure of the masters programme gave me the chance to work
with students from the faculties of ”Architecture” and ”Case Management” in order to create
accessible systems.
This thesis will focus on accessibilty in chapter Relation to Accessibility. The chapter explains
the advantages of a recommendation system regarding accessibility.

3http://karlitschek.de/2016/06/nextcloud/

4

Master’s Thesis Doğan Can Uçar

1.7 Outline
Chapter 1: Introduction

A background to recommendation systems, the motivation and objectives behind this
work and the scientific context is provided.

Chapter 2: Requirements Analysis

Project organization, requirements analysis, general framework and a overview of the
software design and architecture.

Chapter 3: State of the Art

This chapter contrasts the different approaches of recommendation systems, how they
are used as a method to predict user preferences and make recommendations and provides
an overview of the current state of research.

Chapter 4: Implementation

This chapter describes the implementation of the recommendation system described
above as a Nextcloud App.

Chapter 5: Evaluation

This chapter evaluates the results of the implemented recommendation system Nextcloud
app. The results of the app are compared with a predefined test data set.

Chapter 6: Relation to Accessibility

Chances and benefits of the recommendation system for Nextcloud in the context of
accessibility are described shortly in this chapter.

Chapter 7: Conclusion

The results of the thesis are summarised in this chapter and the further work is explained.

5

Chapter 2

Requirements Analysis

This chapter gives an introduction to the requirements for Nextcloud’s recommendation systems
in order to get an overview over the project management andthe resulting software product. In
the first section Problem Definition, the problem is explained in detail. General Conditions as
defined by the environment, stackholders and tools used are explained in General Conditions.
As part of the software project and in context of this work, milestones are defined and explained
in section Milestones. The subsequent sections Functional Requirements and Non-Functional
Requirements discuss the functional and non-functional requirements before an overview over
the requirements is provided in section Requirements Matrix. The last section Software Archi-
tecture and Design introduces the global Nextcloud software architecture and the Nextcloud
app architecture to have a better understanding about the resulting software of this work.

2.1 Problem Definition
Nextcloud is an open source file sharing and synchronisation software that provides only one
software as the enterprise and community version. As a free and open source competitor to
products like Dropbox, Google Drive or iCloud, Nextcloud has a high demand.
The demand for cloud software is obvious: people want the same version of a document on all
devices, everytime and everywhere. They also do not want to care about different file versions
for each device. Another big issue is the usability. People just want to ”take a quick look into a
document” and usually do not want to boot computers for that. This may be due to laziness,
but also to practical usability.
This shall be illustrated with an example of a photographer who just bought a new camera.
During a shooting he notices that he needs the camera manual because he is unable to find
some of the new functions of the camera immediately. Since manuals usually are not really
handy, the photographer would like to have a digital version of the manual. Booting up his
laptop in the middle of a photo shoot is inconvenient and he would therefore prefer to use a
cloud product to store the manual as document. Cloud products like Nextcloud require only
the upload of the file into a cloud. Simply installing the corresponding mobile app will solve
many problems: The photographer is not supposed to carry several manuals in his camera bag

6

Master’s Thesis Doğan Can Uçar

and does not have to boot the laptop. Additionally he is no longer responsible to keep the files
up to date on each device he uses.
A recommendation system is not yet relevant up to this point. But the situation changes rapidly
when the photographer described above works in a company that have many employees with
multiple cameras.
In case of Nextcloud, users would get a notification about new or changed files or it would be
shown on the Activity App. This applies also to files that are irrelevant for the user, such as
documents from sales or human resources departments.
At this point it becomes apparent that effective filtering in large Nextcloud environments with
a high amount of users is necessary. Assuming that every user has access to all files, users
will have to face a range of files they are not able to organize anymore. Therefore a machine
learning approach is needed to make filtering possible.
The following chapters will define requirements for a recommendation system that is used for
Nextcloud. The filtering techniques are based on Collaborative Filtering und Content-Based
Recommendation as discussed in State of the Art.

2.2 General Conditions
This section describes the general project framework such as basic conditions and system re-
quirements. Subsection System Requirements describes technical requirements such as hard and
software required for running Nextcloud, their minimum required versions and the used tools
throghout the development process. The following subsection Basic Conditions describes basic
conditions such as programming language/Nextcloud related boundaries, available development
tools and decisions made by the stakeholders as well as provided by the company philosophy.

System Requirements

During the time this thesis was written, Nextcloud 13 was in development. The final version
was planned for December 2017 or January 2018. But there are no requirements for Nextcloud
13 defined yet. The app is therefore based on the requirements of version 12, but is intended
for version 13. The requirements for Nextcloud 12 are defined in [Nex] as:

• minimum 128MB RAM,

• Linux Server,

• Apache or Nginx webserver,

• MySQL, MariaDB or PostgreSQL database,

• PHP 5.6 or 7.0.

As explained in the officiall PHP documentation, PHP in version 7 or above got a massive
performance improvement [PHPc]. For running machine learning related tasks this is essential

7

Master’s Thesis Doğan Can Uçar

due to the nature of processing large amount of data. Therefore, it is highly recommended to
use PHP 7.0 or above.

Throughout the entire development process, a MacBook Pro with MacOS High Sierra, 16GB
RAM and a SSD hard disk and a MacBook with MacOS High Sierra, 8GB RAM and a SSD
hard are used. Software testing is based on PHPUnit which allows unit tests of single classes
and modules. The evaluation is mainly made on local machines (the MacBooks) as well as
Nextcloud GmbH internal Nextcloud instances.

Basic Conditions

There are some basic conditions that have to be considered for this app. First of all it has to be
mentioned that Nextcloud is a web application that loads its apps at runtime. This situation is
associated with several possible problems: if the request runs against a timeout, the webserver
will stop the request and throw an exception. If this is not the case, the app will possibly need
too long to respond so that the user gets frustrated. This will inevitably cause users to delete
the app.
Therefore, it is a good approach to implement the apps core functionality as a background job
and share the results with other apps. A different approach is to split the recommendation
system in two parts: the backend which is responsible for the recommendations itself and a
frontend that displays the results.

A general approach to machine learning related tasks is the collection of training and test
data centrally. This way the app could better learn about all user preferences and make better
predictions. In practice, this would result in sending training data to Nextcloud servers through
the app.
However, this is not possible with Nextcloud. Nextcloud promises privacy as a ”safe home for
all your data”. The transfer of data from the ”home” to a central database would lead to an
inconsistency of their corporate philosophy. This results in the app only being trained locally,
meaning that there is only local stored data available to train.

The first idea at the early stages of the discussions about the recommendation system for
Nextcloud was the implementation of software that is nearly independent of the Nextcloud
framework. The reason was that PHP, in which is Nextcloud is written, is not a good choice
for machine learning related tasks. Better options are Python or Java programming languages.
Not only because of their ability to process big data sets and run parallel threads but also be-
cause there are a lot of frameworks, which would be a better choice. The goal was a background
job that processes all necessary data and stores the results in a database where Nextcloud can
simply read out.
However, the stakeholders insisted that it has to be a Nextcloud App within Nextcloud bound-
aries. This circumstances require PHP as the programming language for at least the core
implementation and the restrictions described in System Requirements.

8

Master’s Thesis Doğan Can Uçar

2.3 Milestones
The time schedule is provided in form of milestones in order to have a better overview:

Milestone Description Planned End
Initializitaion assembling tools, final discussions and registration 01.11.2017
Scientific Elaboration scientific elaborating and reasoning 01.01.2018
Implementation implementation and test 01.03.2018
Conclusion conclusion 01.04.2018

2.4 Functional Requirements
Functional requirements were defined in several meetings with Nextcloud and Frankfurt Univer-
sity of Applied Sciences. The focus was on a intelligent agent for Nextcloud, better usability
for end users and a new approach to keep the overview of data.

2.4.1 Relation to Machine Learning
From the very beginning of the discussions of this app Machine Learning was the central topic.
The common agreement was that only Machine Learning related techniques are able to provide
a powerful way to learn user preferences and a better feeling with the product. The resulting
app should act as an intelligent agent that is able to make decisions autonomously, provides a
better overview about relevant data and should help users in working with Nextcloud.

2.4.2 Input & Output
The main data source during this thesis are document files like Office, PDF or plain text files.
The user is not required to provide additionally data. Using Nextcloud continiously is enough.
The results have to be stored in a database or provided by an interface to other apps.
The app must assemble all required information such as ratings, co-rated users and the content
independently. In case of the file content, the app must be able to parse different file types and
read out the content.
The app stores its results in a database or provides it to other apps via an interface.

2.4.3 Data Processing
The app should work as a background job and therefore independent from the user interface.
However, it is up to the user to activate or deactivate the app via the Nextcloud app settings
page. The core processing of the app should be extendable for other types of input1.

1more Information in subsection Extensibility.

9

Master’s Thesis Doğan Can Uçar

2.4.4 Recommendations
The app should recommend other files that are shared with a user and could potentially interest
him. The recommendations should be a help, not a disturbing factor. The user should have
the chance to dismiss or deactivate the recommendations.

2.5 Non-Functional Requirements
Non-Functional requirements explain properties that are not in relation with specific functions
to the system. The topics of software quality, data protection and legal aspects are relevant for
the recommendation system.

2.5.1 Software Quality
Software Quality is a central requirement. Since PHP is not intended for processing big data
sets, source code must be as small and effective as possible.
All tools and the programming language itself has to be latest version possible. In case of PHP
7 this is essential due to the performance improvements.
Furthermore, Object Oriented Programming is also a measure of quality due to reusable source
code. Coding guidelines are also available in the Nextcloud developer documentations [NC2].

2.5.2 Privacy and Legal Aspects
As mentioned before, privacy is very important to Nextcloud philosophy. Therefore, the app
should use as little data as possible. This might be a legal problem as data transfer to and
especially from some countries is not allowed. In addition, the data is not allowed to leave the
local instance at any time.

2.5.3 Performance
The app is a software product around a web application. Since there are several aspects to con-
sider, like server timeouts and network transfer, all decisions about algorithms and source code
should take performance as a key point into account. That means that the most performant
algorithm has be used to achieve the functionality [NC3].

2.5.4 Usability
Usability refers to the Nextcloud guidelines and are defined in [NC4]. Thus, software should
work out of the way. Instead of configuring options, the app should automate the workflow.
Furthermore, only the most important elements should be visible on a page. Secondary elements
should rather be placed on hover or via ”Advanced” pages.
With the final version of the app, Nextcloud should also provide a better usability and user

10

Master’s Thesis Doğan Can Uçar

experience. Users should be able to use Nextcloud more easily. The app should support the
user in finding an orientation within a growing number of files.

2.5.5 Portability
The app should work on any system that runs Nextcloud. Therefore, no operating system or
compile version related functions may be used. In Software Quality ”the newest version of all
tools and programming language” is defined as a requirement. However, the app should also
work with previous versions as long as it is possible.

2.5.6 Supportability
Due to the nature of open source, the source code is open for everyone for inspection, modifica-
tion and extension. This requires that the source code is maintainable and that the complexity
level is as low as possible. Furthermore, source code that needs explanation has to be com-
mented.

2.5.7 Extensibility
Data files are the main data source during this thesis. However, the system should be designed
to be extensible.
There are a lot of Nextcloud apps in the Nextcloud App Store. Popular apps are the Calendar,
Contacts or the Mail app. These apps should be able to use the recommendation system and
provide their own data as input or get the results as the output in further versions of the app.

2.5.8 Transparency
The app should also provide transparency. The users should be informed about actions that
are performed by the app. In case of recommendations, the user should know why a specific
item is recommended to him/her. The app should also provide information about files that
are processed and user preferences that are derived from them. However, this requirement is
optional since it is not a key feature of the resulting app.

2.6 Requirements Matrix
The requirements described above are summarized in this table in order to have a better
overview. All requirements are mandatory, except for the ”Transparency” requirement.

11

Master’s Thesis Doğan Can Uçar

Name Description Functional/Non-
Functional

Machine Learning Area implementing a machine
learning related topic

Functional

File Metadata Access reading metadata of files
in order to process them

Functional

File Content reading the content of a
file in order to process it

Functional

Different File Types processing word, PDF
and plain text files

Functional

No additional actions no additional actions
by users required

Non-Functional

Providing results
to other apps

providing results in database
or via an interface

Functional

Parallel Data Processing background job that does
not block the main UI

Non-Functional

Recommend Files recommending files that
are relevant for the user

Functional

newest development
and production tools

using newest develop-
ment tools and pro-
gramming language

for better performance

Non-Functional

taking Nextcloud cod-
ing, privacy, usability

guidelines into account

taking the appropriate
guidelines (coding, security,

usability) into account

Non-Functional

Independence from
the environment

being independent from the
operating system and com-
pile version of any software

Non-Functional

Maintainability being maintainable
for everyone who

wants to work with it

Non-Functional

Extendability being extendable for
other kinds of in-

put or output data

Non-Functional

Transparency providing information
about recommendations

(”why” and ”how”)

Non-Functional

Table 2.1: Requirements Matrix

12

Master’s Thesis Doğan Can Uçar

2.7 Software Architecture and Design
This section should introduce Nextcloud’s software architecture and app architecture. This
should help to have a better overview about the software product and the way how apps are
developed.
The following description is based on Nextcloud 12 hosted on GitHub. The core code is public
and available for inspection. Because the core source code of Nextcloud is not well documented,
the following subsections are results of code inspection in the context of this thesis. Much
information and insight was gained by asking the core developers.

2.7.1 Nextcloud Architecture
This section introduces the Nextcloud architecture shortly. The main goal is the familiarization
with the framework in order to achieve a better understanding.

index.php

The entry point of Nextcloud is the index.php source code file. After some initial checks this
file loads base.php that contains the OC class2. During inclusion, the static function init()
is called which loads the Nextcloud core, checks sessions and environment variables, loads the
autoloader3 and registers the hooks4.

base.php

index.php calls the handleRequest() static method of the OC class in base.php. This method
checks whether Nextcloud is installed or in maintenance mode and searches for a logged in user.
All enabled apps and their classpathes are also loaded here. Then, the app differs the actual ”use
mode”. If the request is web UI based, the method matches URLs to controllers using routers. If
the request ist a WebDAV request, the appropriate modules are loaded and responded. If none
of these modes match, the user is redirected to the default page or login page, respectively.

Routing

Nextcloud uses the routing mechanism of Symfony. A router lets developers define URLs that
can be mapped to to different areas of the application. It allows a flexible, extendable and easy
way to read and process URLs [NC6][SYM].
Each Nextcloud app defines its own routes. Nextcloud can then decide at runtime which URL
corresponds to the which app or class. The routes are registered by the routes.php file that is
mandatory for each app.

2Because Nextcloud is a fork of ownCloud, all classes, files, databases etc. are prefixed with or named OC.
3Normally, a developer is responsible to include his/her source code manually. This means that each file

has to be included separatly. The autoloader automates this task and searches for source code files at defined
places. More informations are available at [PHPa].

4hooks are used to execute code before and after events. More informations are available at [NC5].

13

Master’s Thesis Doğan Can Uçar

Dependency Injection and Container

Dependency Injection is a software design pattern that defines a simple rule: do not instan-
tiate objects within a class but pass them through the constructor. The problem of acquiring
dependencies is a different problem by disallowing instantiating objects. Thus, creating or con-
figurating different objects for specific classes is delegated to one or more central ”injectors”.
Moreover, Dependency Injection allows easy source code testing [NC7].
But Dependency Injection has one central disadvantage: All lines of code have to be refactored
if the number of arguments passed to an object gets changed. The solution of this problem is
to limit the instantiation of objects to one container. Instantiating all objects in the container
allows an easy handling of the objects passed through with Dependency Injection.
However, in case of Nextcloud there is ”Automatic Dependency Assembly” implemented and
is the recommended way using Dependency Injection. That means developers are forced to
use type hints5 for their constructor arguments. Doing this Nextcloud determines the needed
objects and passes them through the constructors automatically [NC7].

Background Jobs

Nextcloud defines three types of Background Jobs: AJAX, Webcron and Cron are possible types
that are introduced in this subsection:

• AJAX: Ajax is a asynchronous web request technique usually combined with JavaScript.
Nextcloud uses AJAX requests each time a page is refreshed to check whether jobs are
registered or not. AJAX is the default but not the recommended mode by Nextcloud.

• Webcron: Webcron uses external cron services to execute tasks within Nextcloud.

• Cron: Cron is a system feature of unix-like operating systems. This mode enables flexible
execution of jobs that would fail through webserver limitations. Cron is the recommended
background job type by Nextcloud.

Registering Background Jobs is also done within a Nextcloud App [NC8].

Nextcloud Request/Response Flow

Nextcloud provides three main flows in order to interact with the underlying system. The first
flow is the access to the API and core through Apps6. Different Sync-Clients, such as mobile
apps or desktop clients, can request or submit data via HTTP.
The second flow is the command line interface CLI. The Nextcloud CLI, named occ, allows
users to interact with Nextcloud via a shell for mass changes, for example.

5Because PHP is a ”weakly typed” programing language, meaning that the types of variables and objects
are determined at runtime, type hinting is not required by default.

6Nextcloud is organized with apps which extend the core functionality. More information in section
Nextcloud App Architecture.

14

Master’s Thesis Doğan Can Uçar

The last flow is the web application itself, where the user can interact through an HTML in-
terface.

Figure 2.1 shows possible interaction types with Nextcloud:

Figure 2.1: Request and Responses in Nextcloud

2.7.2 Nextcloud App Architecture
The main entry point to Nextcloud is index.php. The file loads all apps and configures all
necessary options like hooks, for example.
When loading an app, there are three files that are relevant before executing any app related
code. The first one is info.xml and contains app descriptive information, such as minimum
and maximum version numbers.
app.php configures basic options, such as including composer autoloaders and registering the
Application class, which then registers services to the dependency injection container, for ex-
ample.
routes.php registers all app related routes (URLs). The file returns an array with the appro-
priate values. The following listing shows the route for the recommendations UI. The ”routes”
array contains three keys: ”name” defines the class name and method (”Recommendation”
and ”index”), ”url” defines the URL that should match the name and verb defines the HTTP
RESTful verb.

1 return [

2 'routes' => [

3 ['name' => 'recommendation#index', 'url' => '/

recommendation_assistant_for_files', 'verb' => 'GET'],

4]

5];

15

Master’s Thesis Doğan Can Uçar

Figure 2.2: Sequence Diagramm of an Loading Apps

16

Chapter 3

State of the Art

3.1 Introduction
People recommend various things on a daily basis. Doing this they rely on the knowledge,
experience or preferences of themselves or other people. This can be seen as a social process
since recommendations depend on many factors. At the same time these recommendations are
utterly individual depending on the situation. A system that is able to make recommendations
should idealy work the same way. All these factors, which can vary over time, should be taken
into account when making a recommendation [BHC98].

The demand for recommendation systems is growing parallel to the huge amount of data and
the wide range of selection. As discussed in subsection Recommendation Systems it is nearly
impossible to browse all available options within this selection.
A good recommendation system that leads users to interesting items in a large selection is
essential in order to keep the overview of the selection. Ideally the recommendation system is
personalized, meaning that it measures similarities that are appropriate for a user. It can track
the change of user preferences over time so that the recommendations are not outdated.

There are several approaches to classify recommendation systems. In [Bur02] and [Bur07] the
systems are classified by their data sources on which recommendation is based. The first one is
”Content-Based Recommendation System” that uses properties of an item as a similarity met-
ric. ”Collaborative Filtering” uses items or users and ”Demographic Recommendation System”
uses demographic information like age, sex and occupation to measure similarity. ”Utility-Based
Recommendation System” applies a utility function, usually from the area of Machine Learn-
ing, over an item to determine a similarity rank and the ”Knowledge-Based Recommendation
System” attempts a recommendation based on inferences about a user’s preferences.

[Gor16] follows another approach and classifies in ”Neighborhood-Based Recommendation Sys-
tems”, ”Personalized Recommendation Systems” and ”Model-Based Recommendation Sys-
tems”. ”Neighborhood-Based Recommendation System” searches for items similar to the items

17

Master’s Thesis Doğan Can Uçar

rated by a user. ”Personalized Recommendation System” considers the content or context,
like location, date or time, of an item. ”Model-Based Recommendation System” calculates
weights of items preferences, along with Machine Learning methods, and uses these weights for
recommendation1.

[NP13] has stated Collaborative Filtering, Content-Based Recommendation and Knowledge-
Based Recommendation as the most ”important and widely used” recommendation systems
and [Kla09] discusses Collaborative Filtering and Content-Based Recommendation for its rec-
ommendation system.

Considering that each of these techniques has its own advantages and disadvantages, it is
a good approach to combine them to a ”hybrid recommendation system” to get the best re-
sults and bypass the disadvantages. In [Bur02], [LS13] and [Kla09] this approach is discussed.

In order to create the recommendation system for Nextcloud, appropriate techniques, such
as Content-Based Recommendation, Collaborative Filtering as well as their hybridization are
needed. The following chapter introduces these techniques, explains advantages and disadvan-
tages and describes the way they are hybridized and reasons why they were used.

3.2 Collaborative Filtering
3.2.1 Introduction
The basic idea behind Collaborative Filtering is to find users with common interests by assuming
that people with similar tastes in the past will likely have similar tastes in the future. The main
property to work with Collaborative Filtering are ratings.
Ratings by users for items are used to measure the ”similarity” and may be captured explicitly
with continous request for user feedback or implicitly by observing his/her behaviour. The
rating may be binary such as like/dislike or a numeric value in a given scale.
A rating matrix is defined as ”the set of ratings given to different items” and is also known as
the user profile [NP13][LH16][CCFF11].

As stated above, Collaborative Filtering depends on the overlap in ratings accross the rat-
ing matrix. Once the ratings are sparse, meaning that a couple of users have rated a limited
number of items, measuring similarity gets more difficult. Correlation between users can only
be computed on the base of co-rated items. This problem is also known in domains where the
selection of items is large and - assuming there is no large user base as well - users have not
rated many items. The larger the item base, the less likely is the overlap of co-ratings. This
leads to the fact, that most recommendations are based on just a part of the available items
and possibly represent no real similarities. This difficulty is known as the ”Sparsity Problem”.

1In Machine Learning, inputs are weighted. The constant adjustment of these weights to obtain the best
possible results is essential in order to ”learn”.

18

Master’s Thesis Doğan Can Uçar

Collaborative Filtering is also limited when a user is recently added to the user base since he/she
has no ratings on which predictions can be made. Due to the limited number of ratings by the
new user the predictions will be inaccurate. This problem, known as the ”Early Rater Problem”,
also applies in environments that even have a large user base2.
Usually in small user environments there are individuals with opinions that do not consistently
match with other users of the user base. These users would not benefit from Collaborative
Filtering since their interests do not match the interests of others. This problem, known as the
”Gray Sheep Problem”, would also apply even if the users have successfully bypassed the ”Early
Rater Problem”.
Memory-based approaches use one global model for all items when making recommendations.
This means the model does not consider special circumstances. This may result in inaccurate
or wrong recommendations [Bur02][LH16][BP98].

It soon becomes apparent that Collaborative Filtering works best, if the user interests are
highly distributed across a small selection of items. If the article base changes rapidly, old
ratings become less relevant. Furthermore, similarilty will be impossible if the item base is too
large and the user interests manageable.
Collaborative Filtering works best for users that clearly fit into one or more ”group of interest”.
The ”group” need enough members with similar (but not identical) tastes since Collaborative
Filtering relies completly on user ratings and do not need any descriptive data [Bur02][LH16].

Another strength of Collaborative Filtering is the independence of the item type and works
well even for complex objects like movies, music or books since it relies on object properties
[Bur02]. This becomes clear in [LH16], where a ”Personalized Sports News Recommendation
System” using Collaborative Filtering is discussed. The paper explains the advantage of their
system over Content-Based Recommendation as the ”possibility to provide event or trend based
recommendations, such as news about the World Cup”. Assuming that a user is not interested
in dart league but in the championship, a simple Content-Based Recommendation cannot be
able make recommendations because the user has never read articles about dart before. An-
other advantage is the ability to recommend cross over items with different properties, such as
books, movies or articles [Bur02][LH16].

The following chapter will introduce the different Collaborative Filtering approaches, illus-
trate advantage and disadvantages and explain the choice for the recommendation system
for Nextcloud.

3.2.2 Formal Definition
Let C be the set of all users in the user base and S the set of all items in the item base.
Moreover, let u be the utility function that measures the utility of s to c. The following
function maximizes the user’s utility results in order to choose such items s ∈ S for each user

2This problem is also known as the Cold Start Problem.

19

Master’s Thesis Doğan Can Uçar

c ∈ C:
∀ c ∈ C, s′

c = arg max u(c, s)s∈S (3.1)
where u(c, s) is defined as:

u(c, s) =
∑

u(cj, s) (3.2)
where cj is defined as ”all users similar to c” [JZ09].

3.2.3 Memory-Based Collaborative Filtering
Memory-Based Collaborative Filtering uses the whole rating matrix to compare users or items
by using a measurement method to make predictions [CCFF11]. [JZ09] calculates an unknown
rating rc,s for item s by user c with the following aggregation:

rc,s = aggr rc′,s (3.3)

where c′ is defined as ”a set of N users that are most similar to c and have rated item
s”. Three aggregation functions are introduced in [JZ09]. The first one is a simple average
function, defined as:

rc,s = 1
N

∑
rc′,s (3.4)

The second one considers a similarity factor sim(c′, c) and a weight k in order to calculate the
rating:

rc,s = k
∑

sim(c, c′) × rc′,s (3.5)

where k is defined as: k = 1/
∑ |sim(c, c′)|.

The last equation takes into account that users make their ratings in a different way and
introduces an ”adjusted weighted sum”. While some user rate rather low, others rate com-
parebly high. Taking this into account while calculating a rating, the algorithm subtracts the
average rating of a user from each rating on both items.
A more significant problem in this approach is the fact, that if there is only one common user
between two items, the similarity for those items will have the highest value due to the subtrac-
tion of the average rating. To avoid this a minimum number of users that two articles need to
have in common has to be specified.

The algorithm is defined as [LH16]:

rc,s = rc k
∑

sim(c, c′) × (rc′,s, −rc) (3.6)

where adjustion rc is defined as:

rc = 1
|Sc|

∑
s ∈ Scrc,s (3.7)

20

Master’s Thesis Doğan Can Uçar

and Sc is the set of all items s that have at least one rating by user c with the formal definiton:

Sc = {s ∈ S|rc,s ̸= ∅} (3.8)
[JZ09]. [LH16] uses 3.5 for their ”Personalized Sport News Recommendation System”.

Similarity Function

Equation 3.5 and 3.6 refer to a similarity function sim(c, c′). Many approaches exist in order
to compute this similarity. [JZ09] and [LH16] explain the most common ones:

1. Nearest Neighbor: this method is divided in two subcategories.

• Pearson Correlation Coefficient:

sim(x, y) =
∑

s∈Sxy

(rx,s −rx
)(ry,s−ry)/

√ ∑
s∈Sxy

(rx,s−rx)2
∑

s∈Sxy

(ry,s−ry)2 (3.9)

where Sxy is the set of all items that have been rated by two users x and y.
The algorithm identifies a set of users C that contains all corated items s by users x
and y. Note that only these co-rated items are appropriate for the algorithm. The
basic goal is to identify how much a user rating deviates from the average rating
for a item. Rx,s is the rating of the user on the item and rx is the average rating
of the item.

• Cosine-based: treating users as vectors in m-dimensional space, where m = |Sxy|
containing all corated items. sim(x, y) is measured by computing the cosine of the
angle between them:

sim(x, y) = cos(x⃗, y⃗) = x⃗ · y⃗

||x⃗||2 × ||y⃗||2
=

∑
s∈Sxy

rx,sry,s√ ∑
s∈Sxy

(rx,s)2
√ ∑

s∈Sxy

(ry,s)2
(3.10)

where x⃗ · y⃗ is the dot product between x⃗ and y⃗. Note that this approach does not
consider the average rating of an item.

2. Graph-Based: The basic idea behind this approach is to utilize graph theory in order
to build relations between users. Doing this, a graph between users is maintained over
time whose nodes are the users and edges the relationship between them. This approach
enables the ”on demand” recommendation without computing through the entire rating
matrix since the graph is constantly being updated. This approach is described in detail
in [AWWY99].

3. Mean Squared Difference: measures the degree of dissimiliarity between users by mean
squared difference. Recommendations may be made by considering all users with a dis-
similarity to the user which is less than a defined threshold [SM95].

21

Master’s Thesis Doğan Can Uçar

User-Based and Item-Based approaches

Memory-Based Collaborative Filtering is applicable for User-Based and Item-Based approaches.
User-Based approaches find a set of users who share co-rated items. Then, the algorithm ag-
gregates items of similar users, eliminates already rated items and recommends the remaining
items.
[LSY03] introduces a different approach and focuses on finding similar items, not users. For
each rated item the introduced algorithm finds similar items and recommends them to the user.
The similarity can be computed in various ways. However, the Cosine-Based function is men-
tioned by [LSY03].
After calculating the similarity between the items, a prediction for the user has to be made.
[SKKR01] lists different prediction approaches, such as weighted sum and regression.
Weighted sum uses of the ratings given by the user on the items similar a specific item. Each
rating is weighted by the corresponding similarity between two items. More formally:

Pu,i =

k<N∑
k<0

si,k ∗ ru,k

k<N∑
k<0

|si,k|
(3.11)

The regression approach is similar to weighted average. Instead of using the ratings directly, it
uses an approximation of the ratings based on a regression model.

3.2.4 Model-Based Collaborative Filtering
Model-Based Collaborative Filtering uses the entire rating matrix to learn a model that is used
to derive a model to make predictions. This can be seen as the calculation of the expected
rating for an item by an user.
The ”Sparsity Problem” explained in Introduction can be reduced in model-based approaches
thanks to their ability to learn data characteristics underlying for a user. In spite of the fact
that model-based approaches take a certain amount of time to learn a model, they tend to be
faster then memory-based approaches.
The ”Early Rater Problem” and ”Gray Sheep Problem” also apply for model-based approaches
since time is needed to learn a model and in model-based approaches can even be available
users whose tastes do not consistently agree with any other group of people.
However, model-based approaches still have several problems. Many models are too complex
and several parameters rely on estimations. Moreover, data changes are a problem as model-
based algorithms are sensitive to them. The system will recommend wrong items if one of the
models does not fit the rating matrix. Finally, when modifying the model or adding new data,
the model needs some time to adjust [Bur02][JZ09][CCFF11].

[BHK98] defines Model-Based Collaborative Filtering as:

pc,s = E(rc,s) =
n∑

i=0
Pr(rc,s = i|rc,s′ , s′ ∈ Sc) × i (3.12)

22

Master’s Thesis Doğan Can Uçar

where

• pc,s is the rating prediction for item s by user c,

• 0 and n are the ranges for rating values,

• Pr(rc,s = i|rc,s′ , s′ ∈ Sc) is the probability expression for the probability that c will rate
s with a particular rating taking the previously observed ratings into account.

[Bur02], [BHK98], [CCFF11], [JZ09] and [AT05] introduce several learning methods, such as
Neural Networks, Bayesian Networks, Linear Regression and Support Vector Machines in order
to build the model above. [JZ09] explains the approach to define the recommendation process
as a decision problem and suggests Markov Decision Processes for making recommendations.
[BP98] compared different algorithms of model and memory-based approaches and concludes
that model-based approaches perform better under some circumstances. But the results are
empirical and have no scientific foundation.

3.3 Content-Based Recommendation
3.3.1 Introduction
While Collaborative Filtering focuses on ratings and ignores content, Content-Based Recom-
mendation works with properties of items and uses them to make recommendations. In this
context ”property” can be defined broadly. It can be a type of item, several buzzwords or the
content itself such as text, images or audio.

In case of Content-Based Recommendation, a ”user profile” is smiliar as it is defined in Col-
laborative Filtering and is the ”set of item properties that are owned by a user”. [CGM+99]
describes a content-based and collaborative filter for an ”online newspaper” and divides their
properties into sections that contain implicit keywords identified by the system itself. Moreover,
users can specify additional keywords in order to let the system know about further preferences.

Content-Based Recommendation is less affected by the problems stated in Collaborative Filter-
ing because they do not rely (only) on items that are rated by users. For example, if a newly
added item has a given property that is defined in the user profile, the item will be recommended
to the user before anyone has rated it [LH16].

However, Content-Based Recommendation has a number of limitations. First, it is only focused
on content and cannot differentiate between ”good” and ”bad” content. This circumstance
applies also for two different items that are described by the same set of properties. In this case
they are indistinguishable. Second, the number of ”similar items” will increase with the growth
of the item base and thus, Content-Based Recommendation becomes increasingly ineffective.
Third, content-based approaches will work fine for machine readable content such as text or
URLs. In case of multimedia content such as images or audio it requires a step of preprocessing

23

Master’s Thesis Doğan Can Uçar

which can be challenging. As an alternative, users may assign the properties manually which is
often not a good solution [CGM+99][CCFF11][AT05].
Content-Based Recommendation will also return poor results for items or user profiles with
fewer keywords. The reason for this is simple: If, for example, the item/user profile does not
contain enough keywords, the overlap coefficient will compute a slight similarity.

As described above, Content-Based Recommendation is most effective for textual items. The
text item, hereinafter reffered as document, is parsed to get the most important information
out of it. The result is a list of keywords. These keywords are then used to calculate a degree
of match in order to measure the similarity of two or more documents.

The following section will introduce a few common techniques for content-based recommenda-
tion that are relevant for this work.

3.3.2 Formal Definition
Content-Based Recommendation Systems computes the similarity between the properties of
an item and the properties from the user profile in order to make a recommendation. More
formally, a utility function u(c, s) that estimates the utility of s for c based on past utilities
u(c, s′) to items si ∈ Sc that are assigned by c and ”similar” to s. The formal definition of the
utility of item s to user c would be:

u(c, s) = score(UserProfile(c), ItemContent(s)) (3.13)

Where UserProfile(c) contains a set of keywords associated to c and ItemContent(s) con-
tains the keywords from an item s. There are many methods available in order to calculate the
score. They will be introduced in subsection Degree of Match.

3.3.3 Stopword Removal and Stemming
Stopword Removal and Stemming is part of preprocessing of unstructured text in order to
optimize the comparision between documents. Stopwords are words that do not represent the
content and are often found in a document. Examples include ”and”,”or”,”in”, etc. [Fox89].
Stemming is defined as the process to summarize words that are similar in their meaning in
their root forms. For example, term that reflects the common meaning behind ”computation”,
”computes”, ”computes” or ”computers” could be ”compute” [PB07].
The following subsections will shortly introduce both methods.

Stopword Removal

There are several approaches for removing stopwords. [Fox89] has generated a stop list based
on the Brown corpus3. The list consists of 421 words that is ”maximally efficient in filtering

3The Brown corpus is a lexical and grammatical analysis of one million words of American English assembled
at the Brown University, Providence, USA in 1963.

24

Master’s Thesis Doğan Can Uçar

the most frequently occurring neutral words” according to the authors. Several stopword lists
are available at different web platforms such as GitHub.

However, stopwords are highly tied to the language used and therefore, a lot of maintanance
effort is required. The TF-IDF measure addresses this problem and can be used to work more
language independent. TF-IDF weights all keywords within a document and the entire item
base where these weights represent the importance of the keyword. TF-IDF is based on two
main assumptions:

1. words that occure often within a document are relavant (Term Frequency, TF)

2. words that occure often in the item base are not relevant (Inverse Document Frequency,
IDF)

TF-IDF positively rewards words that occur frequently within a document, whereas frequent
occurrences in the item base are rewarded negatively.
More formally, let t ∈ T be a keyword, d ∈ D a document and i ∈ I the item base. Furthermore,
let n be the number of keywords in a document, ni the number of keyword i within a document
and m the number of documents that contain t at least once. Then, the weight w for t in
TF-IDF is calculated as [Kla09][AT05][PB07][Paz99]:

w(t) = TF × IDF

TF = ni

n

IDF = log10
|I|
m

(3.14)

TF-IDF will return the value 0 when the number of total items in the item base and the number
of items containing a keywords at least once are equal. In this case, |I| and m equal to 1, and
log10 of 1 will result in 0. The multplication of TF and 0 equals to 0.

3.3.4 Degree of Match
After extracting descriptive keywords out of the document, a measure that defines the matching
degree between documents has to be specified. There are a lot of approaches to achieve this.
Many of them are specialized versions of classification learners that aims to learn a function
to predict the class of a document to make recommendations. There are also regression based
approaches that try to predict a rating for the document. The following subsection will introduce
some of them [Paz99].

Overlap Coefficient

[CGM+99] uses the ”Overlap Coefficient” to measure the degree of match between keywords.
Formally:

M = 2|D ∩ P |
min(|D|, |P |)

(3.15)

25

Master’s Thesis Doğan Can Uçar

where D is the set of keywords of the article and P is the set of keywords from the user profile.

Sport1.de Algorithm

[LH16] introduces a separate algorithm in order to measure similarity4:

sim(g, h) =
∑

i∈W (gi × hi)√∑
i∈W gi

2 ×∑
i∈W hi

2
(3.16)

where g, h are vectors with keywords and their weights, W is the set of keywords, i is a keywords
and gi, hi are weights of i in g and h.

Latent Semantic Indexing

[Kla09] introduces ”Latent Semantic Indexing” to make recommendations. First, a matrix of
keywords and documents is created. The matrix is large due to the property that the keywords
denote rows and the documents denote the columns of the matrix.
The size of the matrix is reduced by using ”Single Value Composition”. Keywords, that often
occure together within different documents are summarized to one ”virtual keyword”. This
approach can be used to identify similar documents.

3.4 Other Filtering Techniques
Recommendation systems are not limited to Collaborative Filtering and Content-Based Recom-
mendation. There are several different approaches that are shortly introduced in this section
for reasons of completeness.

3.4.1 Kowledge-Based Filtering
Knowledge-Based Filtering relies on data provided by the user and uses them as constraints
in order to get the most similar results. For example, if the constraint has the rules ”price
< 150 USD”, all items that are cheaper then 150 USD should be recommended to the user.
Knowledge-Based Filtering does not build long-term generalization about the users, but bases
their recommendations on users need and the items available [Bur02][PG14].

3.4.2 Demographic Filtering
Demographic recommenders classifies the users in demographic classes and tries to recommend
based on them. ”Demographic” information can be the age, sex, religion or ethnicity, for
example [Bur02].

4[LH16] does not define a name for this algorithm. Therefore, it is called ”Sport1. de algorithm” in the
following.

26

Master’s Thesis Doğan Can Uçar

3.5 Hybridization
After defining the preferred methods for recommendation, the combination of these methods
has to be considered in more detail. The hybridization can help to overcome the disadvantages
of the specific methods. For example, the content-based recommendations are useful in case
of missing ratings in the Collaborative Filtering approaches. Thus, it can help to bypass the
”Sparsity” and ”Cold Start” problems. There are several methods for the ”Hybridization”
available that are introduced in the following section [CCFF11].

3.5.1 Weighted Average
The goal in weighted average is to find the weights that come up with results that have
the most accurate prediction. [CGM+99] defines weights for the output of Content-Based
Recommendation and Collaborative Filtering methods and adjusts them over time. The weights
are initialized equally and are adjusted when the user provides feedback. The feedback is
obtained by confirmation or disconfirmation, for example.
The weighted average is also used in [LH16]. The combination is called ”Weighted Hybrid
Recommender” and weights the recommendations equally. When both methods recommend
the same item, the item is recommended. Notice that [LH16] does not adjust the weights.
The advantage of weighting the recommendations of each method lies in the simplicity of
combining all results in a final recommendation. It is also easy to influence the final result if
one of the methods used is not accurate enough.
However, this approach assumes that each method used has the same recommendation accuracy
for an item. From the discussion in section Content-Based Recommendation it is known that
this is not always the case. For example, a Content-Based Recommendation method will be
weak if there are too little keywords in the user profile [Bur02].

3.5.2 Switching
In this approach the decision about the final recommendation is based on the switching between
the used recommendation methods. In [BPC00] a switching hybridization is used, where the
system tries to make a content-based recommendation first. If the result of the Content-Based
recommendation is inaccurate, the system makes a Collaborative Filtering based recommenda-
tion.
Since both methods have the ”Cold Start” problem, this approach also has its limitations.
Moreover, switching requires additional complexity because the switching criteria has to be
defined and evaluated continously [Bur02].

3.5.3 Mixing
Mixing may be useful if the result should consist of more than one recommendation. In that
case, the final recommendations may consist of the results of several recommendation methods
[Bur02].

27

Master’s Thesis Doğan Can Uçar

3.5.4 Feature Combination
In Feature Combination, the results of the Collaborative Filtering method is treated as feature
data for a Content-Based Recommendation method. This approach considers Collaborative
Filtering results without relying on it exclusively. Doing this, the ”cold starter” problem may
be mitigated [Bur02].

3.5.5 Cascading
Cascading uses recommendation methods for a staged process. The first step is to find can-
didates that may be recommended. In a second step, these candidates are refined to a set of
final recommendations [Bur02].

3.5.6 Model Using
The main idea is the creation of model that uses Content-Based Recommendation and Collab-
orative Filtering methods. For instance, [AT05] discusses different approaches with rule-based
classifiers, probabilistic methods, Bayesian classifiers using Monte Carlo methods or Case-Based
Reasoning.

3.5.7 Monolithic
[PG14] introduces a ”monolithic” approach where a final recommendation bundles a number
of all features of specific methods.

3.5.8 Pipelining
A pipelined recommendation process consists of multiple recommendation methods where the
output of one recommendation method is the input of another. The last recommendation
method makes the final recommendation [PG14].

3.6 Reasons for Methods Chosen
This section concludes by explaining the reasons for the chosen methods and reflecting the
described approaches above.
The process of making recommendations is structured as follows: First, methods of Collabo-
rative Filtering and Content-Based Recommendation are applied to those items that are not
recommended. The results are stored separately in the system. Then, the hybridization process
will make a final recommendation out of these results and store them in the system. And finally,
the calculated results are provided to other parts of the system on demand.

28

Master’s Thesis Doğan Can Uçar

3.6.1 Collaborative Filtering
This thesis makes use of Memory-Based Collaborative Filtering for the recommendation system
for Nextcloud for performance reasons. As discussed in subsection System Requirements the
system only has only limited computing power. Moreover, the limitations of the used tools and
programming language as explained in subsection Basic Conditions forces us to use methods
that are fast in computing and resource saving. In addition, Model-Based Collaborative Filter-
ing requires training data to learn a model and apply it to new data. Since no training data is
available for this thesis, an evaluation of an implemented Model-Based Collaborative Filtering
is not possible.

As described in User-Based and Item-Based approaches, Memory-Based Collaborative Filtering
is aplicable for items or users, respectively. The main difference is how recommendations are
made: the user-based approach finds ”similar” users followed by ”similar” items. This results
in O(U ∗ I) time complexity. Item-based approaches depend only on the number of items
and independent from users. Therefore, its complexity is limited to O(I). Since computation
power is restricted, the user-based approach is not an option for Memory-Based Collaborative
Filtering. The Cosine-Based approach as described in Similarity Function is used to measure
similarity between two items.
After measuring similarity between items the Collaborative Filtering part will use weighted av-
erage5 as described in Similarity Function in order to make a prediction for a user.

3.6.2 Content-Based Recommendation
Content-Based Recommendation covers stopword removal and content similarity by a degree
of match. The items are provided by the Nextcloud framework and thus, the recommendation
process can focus on content extraction and not about file system operations, for example.

Stopword Removal

The Content-Based method will care about stopwords but not about stemming. Stopwords are
”naturally” excluded with TF-IDF as explained in Stopword Removal. It is not necessary to
care about used language or need to import stopword lists externally.
In case of stemming the situation differs: since the linguistic constitution of words are highly
tied to the language, it is not possible to provide support for different languages within this
work. Early thoughts were the support for only Englisch language. But this approach would be
problematic since our test data is in German language.

Degree of Match

The ”Degree of Match” between a document and keywords associated to a user profile is cal-
culated with the Overlap Coefficient with a minor deviation as defined in [CGM+99].

5not to be confused with weighted average in section Hybridization.

29

Master’s Thesis Doğan Can Uçar

The paper defines:

M = 2|D ∩ P |
min(|D|, |P |)

(3.17)

As a result, the following applies to M : 0 ≤ M ≤ 2.
Since a similarity value between 0 and 1 is required, the equation is modified as follows:

M = |D ∩ P |
min(|D|, |P |)

(3.18)

In Evaluation is a second evaluation approach based on modification time stamps explained.
Since the rating range is spread over 0 to 5, the Overlap Coefficient is modified as:

M = 5|D ∩ P |
min(|D|, |P |)

(3.19)

The Overlap Coefficient has a time complexity of O(1) since it does not iterate over all
keywords of D or P and bases on a simple equation.

Similarity and TF-IDF

A first attempt was made to calculate the degree of correspondence with the Sport1.de algo-
rithm. However, this failed because the measure TF-IDF does not define a constant weight for
a keyword over all documents. This should be demonstrated with a simple example:

D =


This
is
an
example

 P =



The
weather
is
rainy
this
week


Q =

(
Hello
world

)
.

The keyword ”this” has different TF-IDF results since the calculation considers the number of
keywords of a single document:

TFIDF(”this” in D) =
1
4

log(3
2) = 0.25

0.17609125905568 = 1.4197183968169

TFIDF(”this” in P) =
1
6

log(3
2) = 0.16666667

0.17609125905568 = 0.94647895014085

30

Master’s Thesis Doğan Can Uçar

Instead of using TF-IDF as a part of similarity measurement, it servers only for excluding key-
words while generating a user profile and the documents keywords. Keywords with a TF-IDF
value less then a defined threshold6 are considered as ”stopword”.

3.6.3 Hybridization
The weighted average approach described in Weighted Average is suitable for this thesis since
it provides extendibility. This is very useful, since the resulting app can be extended in further
versions with additional data sources that may require other filtering techniques.
In addition, the weighted average provides an easy way to change weights if one of the techniques
dominates the result.
Hybridization has a constant time complexity of O(1) since it first multiplies the weights with
the similarity results and builds the average. For n items, the hybridization complexity is O(n).

6The threshold is not defined yet since it should be evaluated later.

31

Chapter 4

Implementation

4.1 Introduction
The previous chapter has described the theory behind a hybrid recommendation system us-
ing Collaborative Filtering and Content-Based Recommendation. Based on these results, this
chapter will elaborate the implementation of a recommendation system within the Nextcloud
framework.
”Recommendation Assistant” will mainly work as a background job. The results are stored in
a database table1 that can be used to query the data and visualize them, for example. The
reason for a background job is simple: Processing X files of Y users ”on demand” would result
in bad response times. ”On demand” is defined as a (re)load of the page in case of Nextcloud.

The familiarization with the Nextcloud framework can be done using the official documen-
tation [NC9]. However, Nextcloud is in ongoing development, which means that there are
constant changes that are not part of the documentation yet.
As mentioned in further chapters Nextcloud 13 was in development when working on this mas-
ters thesis. The main new feature of this version was the ”end-to-end encryption” as anounced
in [NC1a]. In previous versions, the way of working on registering background jobs, menu en-
tries and database tables has also changed.
Since the official documentation of Nextcloud 13 is not released yet, the only way to access
necessary information was to ask the (core) developers. A further way getting familiar with
the Nextcloud framework is the ownCloud documentation. As mentioned in previous chapters,
Nextcloud is a fork of ownCloud and therfore, it almost consists of the same software archi-
tecture. Considering this, it is possible to use ownCloud documentation or forums in order to
access informations about the app development.

The resulting recommendation system uses five external libraries which are loaded via com-
poser and the autoloader mechanism. rtf-html-php2 is a framework to parse RTF documents

1Database access is described in section Database Storage.
2released on GitHub: https://github.com/henck/rtf-html-php

32

Master’s Thesis Doğan Can Uçar

and licensed under the AGPLv2 license. PHPSpreadsheet, PHPWord and PHPPresentation are
libraries to parse office documents by PHPOffice3 and are licensed under LGPLv3. The last
library, PdfToText4, is used to parse PDF files and licensed under GPLv3.

4.2 General App Architecture
Before the app architecture and implementation is described, this sections starts off by describing
general app architecture and the design patterns behind Nextcloud.

4.2.1 PSR-4 Autoloading
Nextcloud supports the PSR-4 autoloading mechanism since version 10. The basic idea behind
this mechanism is to map class namespaces to file paths.

For example, the namespace:
1 \Acme\Log\Writer\File_Writer

is mapped to the file:
1 ./acme-log-writer/lib/File_Writer.php

where ./acme-log-writer/lib/ is the base directory of the project.

In case of Nextcloud, the OCA\MyApp is mapped to the /apps/myapp/lib/ where ”myapp” is
the name of the app.
In addition to that, the autoload mechanism of package managers such as composer can be
used. If this is the case, the application/app.php file needs to include the vendor/autoload.php
file of composer [NC1b][PHPb].

4.2.2 Dependency Injection
Nextcloud uses Dependency Injection software pattern in order to assemble necessary object
instances and provides them to apps if necessary. Dependency Injection means that classes
should not instantiate any other class but get them passed in. There are different ways to pass
the instances such as through the constructor and getter-setter methods.
Dependency Injection simplifies source code for maintenance and testing. The class that gets
an instance injected must not care about it anymore. It ”just uses” it. If the object passed to a
class requires any changes, for example in that way how it is created, this is done outside of the

3released on GitHub: https://github.com/PHPOffice
4The library is available via GitHub but was not set up for composer. Therefore, I have forked the project

and added composer support. The library is available here: https://github.com/doganoo/PdfToText

33

Master’s Thesis Doğan Can Uçar

class. Moreover, in case of such changes, the class that uses does not need retested because
the preparation of the object is out of its responsibility.
Dependency Injection has also several disadvantages. If the class that gets instances injected
needs further objects, all occurrences of the class need to be changed. This issue can be solved
using so called ”containers”.

A container is a central location where the classes that gets instances injected are created.
Within the container, the classes are created and the necessary instances are injected. If there
are new instances required by a class, the only place where the changes have to be applied is
inside the container.
The container is queried wherever the class is needed. The container creates the class und
passes it to the file that requests the class5.
Nextcloud provides an ”Automatic Dependency Assembly” that provides the passthrough of
core objects to the classes which is the recommended way by Nextcloud. Doing this makes the
code more readable and maintable according to the official documentation [NC1c][MWD][JSD].

4.3 Nextcloud App Architecture
In several discussions with the Nextcloud core developers as well as the managing director, one
of the strategic goals of Nextcloud was described as being modular and extensible. That is why
all features, including the file sharing feature, are organized as ”apps” that are downloadable
from the Nextcloud App Store as well as from GitHub.
An app is defined as a bundle of source code that extends the Nextcloud core with a specific
functionality. The app can easily be enabled or disabled on the settings page6. According to
[NC1d], the folder structure of an app is as follows:

• appinfo: apps metadata and configuration

• css: (additional) CSS files

• js: (additional) JavaScript files

• lib: apps PHP files

• templates: (HTML) templates

• tests: (unit) tests of the app

The first file regarding to an app that is processed by Nextcloud is the appinfo/app.php file.
Upon the purpose and version of the app, this file registers menu entries, background jobs or

5In this work, the container is used to get the necessary service classes for the background jobs as shown
in TimedJob.

6Some features are architectural outlined as apps but it is not possible to deactivate or delete them. They
are therefore part of the Nextcloud core although they are located under the ”apps” folder.

34

Master’s Thesis Doğan Can Uçar

hooks.
appinfo/info.xml contains metadata about the app such as the unique app id, name, de-
scription, license or version. info.xml defines also the minimum version of Nextcloud that is
required by the app. And since Nextcloud 10 it is also possible to register background jobs via
this file. The appropriate section of the info.xml of this app looks like:

1 <dependencies>

2 <nextcloud min-version="13" max-version="13"/>

3 </dependencies>

4
5 <background-jobs>

6 <job>OCA\RecommendationAssistant\BackgroundJob\RecommenderJob</job>

7 <job>OCA\RecommendationAssistant\BackgroundJob\UserProfileJob</job>

8 </background-jobs>

9

The background − jobs XML-node is responsible for registering background jobs. In this app
are two background jobs defined: the RecommenderJob, which performs the recommendation
process, and UserProfileJob, that assembles the keywords for a user profile. Both classes are
in the namespace OCA\RecommendationAssistant\BackgroundJob.

4.4 RecommenderJob
As mentioned in section Nextcloud App Architecture, the RecommenderJob class is the en-
try point for making recommendations. The autoloader described in PSR-4 Autoloading ensures
that RecommenderJob.php located at apps/recommendation_assistant/lib/backgroundjobs
is included successfully. The RecommenderJob class is registered as an background job via
the info.xml as shown above.

4.4.1 TimedJob
The RecommenderJob class must extend the abstract class OC\BackgroundJob\TimedJob.
TimedJob requires the implementation of the run() method. Moreover, RecommenderJob
needs to specifiy an interval that defines when the background job should be executed. Thanks
to Dependency Injection, the service class RecommenderService can be injected through the
constructor. Nextcloud will then pass the right instance to the class.

35

Master’s Thesis Doğan Can Uçar

The run() method executes the service class that implements the business logic:

1 class RecommenderJob extends TimedJob {

2
3 public function __construct(RecommenderService $recommenderService) {

4 $this->setInterval(RecommenderJob::INTERVAL);

5 $this->recommenderService = $recommenderService;

6 }

7
8 protected function run($argument) {

9 $this->recommenderService->run();

10 }

11 }

4.4.2 RecommenderService
The RecommenderService class is responsible for executing the Collaborative Filtering and
Content-Based Recommendation algorithms described in chapter State of the Art. This sub-
section will explain the structure of this class in detail.

RecommenderService gets instances of IRootFolder, IUserManager, ITagManager,
IGroupManager and several database access instances injected. The IRootFolder instance
provides a view to the users files folder in order to access the files.
The IUserManager instance provides all users that are registered to the Nextcloud instance.
This object provides a callback callForSeenUsers() for all users that have ever logged in
into Nextcloud. This callback allows to consider only that kind of users who uses Nextcloud
continuously. Moreover, considering that the Nextcloud instance has several hundred users, it
would be a performance problem if the app loops over all users every time.
The ITagManager instance provides access to the tags that a user gives to a file. The
ITagManager also provides access to the information about whether one file is tagged as
favorite or not. Technically, tagging a file as favorite is nothing more than tagging a flag with
the string ”favorite”.
The IGroupManager instance provides access to the the groups in which a user is a member.

The callForSeenUsers() is called within the run() method that is called by RecommenderJob
as shown above. The callback function which must be provided to callForSeenUsers() gets
an instance of IUser interface and represents the actual user that is processed.
The callback function first needs to initialize all mount points of the user. This initialization is
critical since without initializing the user profile will not contain shared files and files that are
on a remote storage. Under certain circumstances the files that are owned and uploaded by the
user are also not visible.
The IRootFolder provides user folders using the getUserFolder() method which returns the

36

Master’s Thesis Doğan Can Uçar

user’s root folder. The method can be executed after initializing the mount points.
The root folder may contain files or folders again. Therefore it is necessary to check the type
of the returned instance in order to ensure that all files in all folders are processed.

The handleFolder() method first checks the type of the returned instance. If the object
is an instance of OCP\Files\Folder, the method calls itself recursively. If the object is an
instance of OCP\Files\File, the handleF ile() method gets called.
The recursive call to handleFolder() returns a list of items and has to be merged with the
already existing list. The handleF ile() method returns a single item which needs to be added
to the existing list.
Before the (recursive) calls are executed the method ensures that the node is valid, mean-
ing that it is not encrypted and readable by the app. It is critical to validate an instance
of OCP\Files\Node and not OCP\Files\File, as Nextcloud 13 introduces end-to-end-
encryption whose ”encrypted” flag is set to folders and not files.

1 private function handleFolder(Folder $folder, IUser $currentUser):

ItemList {

2 $itemList = new ItemList();

3 try {

4 foreach ($folder->getDirectoryListing() as $node) {

5 $valid = NodeUtil::validNode($node);

6 if ($valid) {

7 if ($node instanceof Folder) {

8 $return = $this->handleFolder($node, $currentUser);

9 $itemList->merge($return);

10 } else if ($node instanceof File) {

11 $return = $this->handleFile($node, $currentUser);

12 $itemList->add($return);

13 }

14 }

15 }

16 } catch (NotFoundException $exception) {

17 Logger::warn($exception->getMessage());

18 }

19 return $itemList;

20 }

The handleF ile() method checks the files mime type first. If it is not a supported mime type,
the method returns ”false”. Then, the method calls three more methods in order to prepare
the files for Collaborative Filtering and Content-Based Recommendation: First, an instance
of OCA\RecommendationAssistant\Objects\Item is created by calling the createItem()
method. Then, the addRater() method is called which checks if the file is tagged as favorite
or not. The last method addKeywords() reads the files keywords and appends them to the
Item object.

37

Master’s Thesis Doğan Can Uçar

The way how the content is parsed and the determination of favorites are described below.
The result of the handleF ile() method is an instance of Item which contains the necessary
information for Content-Based Recommendation and Collaborative Filtering. The list is then
used in two further classes: OverlapCoefficientComputer, that is the implementation of
the Degree of Match using the Overlap Coefficient as described in Overlap Coefficient and
CosineComputer(), which is the implementation of Cosine-Based similarity as described in
Similarity Function. Both implementations are explained in Content-Based Recommendation
Implementation and Collaborative Filtering Implementation in detail.

4.4.3 Reading File Content
One of the key properties of Content-Based Recommendation is the ability to make recommen-
dations based on the content of an item (a document in this case). Therefore, it is necessary
to parse the content of a file that is in the user profile. There are several file types that are
supported actually:

• Microsoft Word (docx)

• Microsoft Excel (xlsx)

• Microsoft PowerPoint (pptx)

• OpenDocument Spreadsheet (ods)

• OpenDocument Text (odt)

• PDF

• Plain Text (txt)

• HTML

• JSON

• RTF

• TXT

• XML

Each of these types has its own class which implements the IContentReader interface. This
interface requires only one function read() that takes a OCP\Files\File instance as an
argument. The function requires a string as the return type. Detailed information about the
implementation is available in subsection Reading File Content.

38

Master’s Thesis Doğan Can Uçar

4.4.4 Favorites
As mentioned above, the ITagManager instance can be used to achieve tags that are given
to a file. To determine whether a file is tagged as ”favorite” or not, the tags for a user must
be loaded with the load() provided by ITagManager. The method returns an object of
OCP\ITags which provides the method getFavorites(). This method returns an array with
the file ids that are tagged as favorite. Requesting the array for an appropriate file id determines
whether this file is a favorite or not.

In chapter Evaluation, the evaluation is made with two kinds of rating types. In Evaluation
Based on Modifications Timestamps, the favorite tagging and last modification timestamps are
converted to a rating. The timestamps are stored in a database which is filled whenever a user
decides to tag a file as a favorite.

4.4.5 TU Berlin Statistics
The Technische Hochschule Berlin uses Nextcloud within their own infrastructure in order to
provide webspace for their students and staff. While the TU is one of the biggest customers of
Nextcloud, the company had the chance to ask them for some statistics in order to asses the
situation.
The Managing Director of Nextcloud, Mr. Frank Karlitschek, has requested statistics about
the usage of the ”favorites” functionality from the TU Berlin on 11/17/2017.
Dr. Thomas Hildemann, Head of Infrastructure Department at TU Berlin, has responsed to
our request on 11/20/2017 with the following statistics:

Name Description
Number of Persons that uses

the ”Favorites” function
1982

Number of items that
are tagged as ”Favorite”

2727

User with the most favorites 72
User with the least favorites 1

The ”TU Berlin” Nextcloud instance has approximately 22.000 active users. The statistics
show that approximately 2.000 users use the ”tag as favorite” functionality. Therefore, the
function can be used for a first evaluation but is not reliable for a constant success of Collabo-
rative Fitering7.

7In a second evaluation attempt, the evaluation is based on different kind of ”ratings”. More information is
available at chapter Evaluation.

39

Master’s Thesis Doğan Can Uçar

4.4.6 Item
The representation of items (documents) is necessary for both Collaborative Filtering and
Content-Based Recommendation. Therefore, a class Item is created and structured as fol-
lows:

Figure 4.1: UML Class Diagram of class Item

4.4.7 ItemList
The above explained Item class has to be managed within a list in order to access the instances
easier when calculating the similarity. Therefore, the class ItemList is created. This class
implements the IteratorAggregate interface in order to be iterable. The interface requires a
single function getIterator() that returns an instance of ArrayIterator with the item classes
as an array. The structure of ItemList is as follows:

Figure 4.2: UML Class Diagram of class ItemList

A special attention should be paid to the add() method which adds an instance of Item to the
list. This method has to ensure that there are no duplicated items in the list. The list uses the
item id as the unique index and first checks if the list contains an item with this id. If this is

40

Master’s Thesis Doğan Can Uçar

the case, the item keywords and raters are merged with the available item. If not, the item is
added to the list.
This characteristic lets the ItemList class act like a Set, where each element can be represented
only once.

4.4.8 Keyword
The keywords are represented by the Keyword class. Each Keyword instance has the keyword
itself as a string, the corresponding TF-IDF value and an integer value to count the occurrences
within a list. The count attribute enables the following KeywordList class to contain each
keyword only once and increment the attribute whenever the keyword is added multiple times.

Figure 4.3: UML Class Diagram of class Keyword

4.4.9 KeywordList
The Keyword instances are managed in a KeywordList that is constructed similarily to the
ItemList class. KeywordList implements the IteratorAggregate interface in order to be
iterable.

Figure 4.4: UML Class Diagram of class KeywordList

Keyword instances are accepted by the add() method of the KeywordList class. When adding
an instance to the list, the method first searches for the keyword in the list. If the keyword is

41

Master’s Thesis Doğan Can Uçar

not in the list, it is added and no other actions are required. If the keyword is already in the list,
the available instance is retrieved and the instance counter is increased by one. This approach
is known as Bag-of-Words [BoW]. Doing this it is ensured that the list contains each keyword
only once. The keyword counter, which is a simple integer value, represents the number of
occurrences within in the list. This number can then be used for CosineComputer, for example.

4.4.10 HybridItem
Instances of HybridItem class represent the results of Content-Based Recommendation and
Collaborative Filtering measurements and contain the corresponding values. Moreover, it imple-
ments a method getWeightedAverage() which performs the Weighted Average as described
in Weighted Average. The isRecommendable() method compares the hybrid recommendation
result to a defined threshold in order to decide whether the item is recommendable.

Figure 4.5: UML Class Diagram of class HybridItem

4.4.11 HybridList
The HybridList class serves as a collection for HybridItem instances and is similar constructed
as the List classes described above.

Figure 4.6: UML Class Diagram of class HybridList

4.4.12 Interface IComputable
The IComputable interface has to be implemented for each object that calculates similarity
between two or more objects. The interface requires only one method compute(). The UML
representation is as follows:

42

Master’s Thesis Doğan Can Uçar

Figure 4.7: UML Class Diagram of interface IComputable

4.4.13 Interface IContentReader
The IContentReader interface has to be implemented for each object that reads file content of
a given mime type. The interface requires only one method read(), that gets an instance of
\OCP\Files\File as an argument passed. The UML representation is as follows:

Figure 4.8: UML Class Diagram of interface IContentReader

4.5 Collaborative Filtering Implementation
This section describes the implementation of the Collaborative Filtering component as described
in Collaborative Filtering. The Collaborative Filtering component is implemented using a Mem-
ory Based algorithm. Model Based approaches require a training phase and data set in order
to train the model. But in the actual stage of this thesis, these requirements can not be met.
Moreover, Memory Based algorithms require much more computation time than Model Based
aproaches.
There are several algorithms within Memory Based approaches available as explained in Simi-
larity Function. For this implementation, we are going to use the CosineSimilarity in order
to calculate the similarity between two items.

4.5.1 User Ratings
Collaborative Filtering relies on user ratings as explained in detail in chapter Collaborative Fil-
tering. While ratings between 1 and 5 are possible on platforms such as Amazon.com or Netflix,
this is not possible on Nextcloud. There is neither a functionality nor a use case for such a kind
of rating.
Instead, we the ”tag as favorite” functionality of Nextcloud is used where users can tag files as
favorites. Doing this the files will appear on top of the list.
This means, that the CosineSimilarity measure will use a binary rating. If the user has tagged
a file as favorite, the rating will be 1. Otherwise the rating equals to 0.

In a second evaluation attempt, the way how user ratings are considered has been modified
in order to evaluate it in comparison to a second model. In this attempt, user ratings are

43

Master’s Thesis Doğan Can Uçar

assembled as a weighted average of two main attributes: the file modification and favorite
tagging time stamps by a user. The advantage of this approach is that the time stamps can
be spread and thus, enable rating ranges that are normally not possible on Nextcloud, as men-
tioned above. The rating range is defined from 0 to 5 inspired by platforms like Amazon.com
or Netflix. Therefore, a rating with value 0 means that the user has not reacted to the item
yet. A rating value 1 is the lowest and 5 the most highest possible rating and are defined as:

min days since
last change

max change
since last change

rating

0 3 5
3 5 4
5 10 3
10 15 2
15 20 1
20 ∞ 0

The results of the first attempt are described in Evaluation Based on Static Tags whereas the
results of the second attempt are described in Evaluation Based on Modifications Timestamps.

4.5.2 CosineComputer
The CosineComputer class is responsible for the Cosine Similarity algorithm and imple-
ments the IComputable interface. The class gets two instances of Item through the construc-
tor injected and calculates the similarity of them. Since the class implements IComputable, it
is required to implement the compute() method, which is structured as follows:

1 public function compute(): Similarity {

2 $similarity = new Similarity();

3 if ($this->sourceItem->equals($this->targetItem)) {

4 $similarity = Util::createSimilarity(1.0, Similarity::

SAME_COSINE_ITEMS, "the items are the same");

5 return $similarity;

6 }

7 $denominatorA = 0;

8 $denominatorB = 0;

9 $numerator = 0;

10 $denominator = 0;

11 /** @var Rater $rater */

12 foreach ($this->sourceItem->getRaters() as $rater) {

13 $yValid = $this->targetItem->getRater(

14 $rater->getUser()->getUID()

15)->isValid();

16 if (!$yValid) {

17 continue;

18 }

44

Master’s Thesis Doğan Can Uçar

19 $sourceRating = $rater->getRating();

20 $targetRating = $this->targetItem->getRater($rater->getUser()->getUID

())->getRating();

21 $numerator += $sourceRating * $targetRating;

22 $powX = pow($sourceRating, 2);

23 $powY = pow($targetRating, 2);

24 $denominatorA += $powX;

25 $denominatorB += $powY;

26 }

27 $denominator = sqrt($denominatorA) * sqrt($denominatorB);

28 if ($denominator == 0) {

29 $similarity = Util::createSimilarity(0.0, Similarity::

NO_COSINE_SQUARE_POSSIBLE, "multiplication returned 0");

30 } else {

31 $similarity = Util::createSimilarity($numerator / $denominator,

Similarity::VALID, "ok");

32 }

33 return $similarity;

34 }

The method checks first if the items are equal. If this is the case, the method returns a instance
of Similarity with a similarity value of 1. If the items are not the same, the method calculates
Cosine Similarity as described in Similarity Function. If the denominator equals to 0, the
method returns an instance of Similarity with a value of 0 in order to prevent a ”division by
zero” exception. Otherwise, the division required by Cosine Similarity is executed and the
Similarity instance is returned.

It has to be mentioned that the CosineComputer class only calculates the similarity be-
tween items and does not predict a user’s rating. For this purpose, there is a second class
RatingPredictor:

1 public function predict(): Similarity {

2 $similarity = new Similarity();

3 $numerator = 0;

4 $denominator = 0;

5
6 $itemArray = $this->itemList;

7 if (!Application::DEBUG) {

8 /*

9 * k-nearest neighbor approach: remove all items that have a

similarity less than a threshold

10 */

11 $itemArray = array_filter($this->itemList->getItems(), function (Item

$item, string $key) {

12 $sim = $this->matrix->get($this->item, $item);

13 return $sim->getValue() > Application::

K_NEAREST_NEIGHBOR_SIMILARITY_THRESHOLD;

45

Master’s Thesis Doğan Can Uçar

14 }, ARRAY_FILTER_USE_BOTH);

15 }

16
17 /** @var Item $item1 */

18 foreach ($itemArray as $item1) {

19 if ($this->item->equals($item1)) {

20 continue;

21 }

22 $sim = $this->matrix->get($this->item, $item1);

23 $rating = $item1->getRater($this->user->getUID())->getRating();

24 $numerator += $sim->getValue() * $rating;

25 $denominator += $sim->getValue();

26 }

27 if ($denominator == 0) {

28 $similarity = Util::createSimilarity(0.0, Similarity::

NO_SIMILARITY_AVAILABLE, "denominator is 0");

29 } else {

30 $similarity = Util::createSimilarity($numerator / $denominator,

Similarity::VALID, "ok");

31 }

32 return $similarity;

33 }

The predict method first removes all items whose similarity value is less than a defined threshold.
The K-Nearest-Neighbor method ensures that only items that are similar enough are used for
prediction. Then, the weighted average as described in Similarity Function are used to calculate
a prediction for a given item and user.

4.6 Content-Based Recommendation Implementation
This section explains the Content-Based Recommendation component of the recommenda-
tion system as defined in Content-Based Recommendation. This component implements the
Overlap Coefficient as defined in Degree of Match in order to measure the degree of match
between two sets of keywords.
The ”Sport1.de Algorithm” approach, that was originally the preferred algorithm for Content-
Based Recommendation, uses keyword weights in order to calculate the similarity. However,
this will not work with TF-IDF values. The reason is simple: one keyword may have a different
weight within two different documents. An example is described in Similarity and TF-IDF.
”Latent Semantic Indexing” requires a lot of computation time which has to be avoided accord-
ing to the requirements in Requirements Analysis. For that reason, this approach is inappro-
priate, considering the limitations of the programming language and in order to avoid timeouts
due to long computation time.

46

Master’s Thesis Doğan Can Uçar

4.6.1 User Profile
Many Content-Based Recommendation approaches create a user profile that consists of key-
words which describe the user’s tastes. This profile has to be maintained over time because
user tastes can (and will) change over time. This requires at least one additional process that
assembles new keywords and removes those that no longer describe the user’s tastes.
Forcing users for additional actions such as inserting keywords can be frustrating and time-
consuming. Therefore, this thesis will follow a different approach. ”Dynamic” keywords will be
considered and associated to a user profile. This means, that all keywords of all files will serve
as the set of keywords that describe the user’s tastes. Doing this, the user is not requested to
do any additional steps. Assuming that the user maintains his/her files and folders he/she will
also maintain the set of keywords that describe his tastes.

The user profile is created once a day out of all documents that are in a user’s Nextcloud.
All keywords that are older than a defined day are going to be deleted first. Then, all files are
processed in order to create a new user profile. Each keyword is addded only once to a user
profile.
The user profile creation is implemented as a second background job. The UserProfileJob
class is implemented similarly as the RecommenderJob class. First, the background job needs
to registered in the info.xml file:

1 <background-jobs>

2 <job>OCA\RecommendationAssistant\BackgroundJob\UserProfileJob</job>

3 </background-jobs>

Then, the TimedJob must be implemented, similar to the job described in RecommenderJob:

1 class UserProfileJob extends TimedJob {

2
3 public function __construct(UserProfileService $userProfileService) {

4 $this->setInterval(UserProfileJob::INTERVAL);

5 $this->userProfileService = $userProfileService;

6 }

7 protected function run($argument) {

8 $this->userProfileService->run();

9 }

10 }

The UserProfileService class is similar to the RecommenderService class. First, the class
iterates over all users that have logged in at least once. Then, a list of keywords using the
KeywordList class is created for all users. The list scores all keywords using TF-IDF scoring
and removes all stopwords. Finally, the relevant keywords are stored into the database.

47

Master’s Thesis Doğan Can Uçar

4.6.2 Reading File Content
The IContentReader interface is responsible for parsing file content of file types (mime types)
as described in Reading File Content. Therefore, the following classes are created. Each class
gets an instance of OCP\Files\File:

• DocxReader

This class works with the absolute path of the files and not with the getContent()
method of the File instance. The absolute path is composed of the user’s data directory
8 and the getPath() method of the File instance, which defines the relative path within
the data directory.
Parsing DOCX documents is realized with the PHPOffice/PHPWord library. The
library gets the absoulte file path and returns an array of sections, that contains Text
instances. This instances contain the plain text, which can be accessed by the getText()
method:

1 public function read(File $file): string {

2 $dataDir = Application::getDataDirectory();

3 $filePath = $dataDir . "/" . $file->getPath();

4 $word = new Word2007();

5
6 ...

7
8 $reader = $word->load($filePath);

9 $sections = $reader->getSections();

10
11 $string = "";

12 foreach ($sections as $section) {

13 foreach ($section->getElements() as $element) {

14 if ($element instanceof Text) {

15 if (null !== $element->getText()) {

16 $string .= $element->getText();

17 }

18 }

19 }

20 }

21 return $string;

22 }

8the data directory is usually the folder named ”data” within the Nextcloud root folder if not defined
otherwise.

48

Master’s Thesis Doğan Can Uçar

• EmptyReader

This class simply returns an empty string and is intended for files (mime types) that
are not supported yet.

• HTMLReader

This class returns the file content through the getContent() method of the File in-
stance and removes all HTML tags with the PHP core function strip_tags().

• JSONReader

This class encodes the file content, a JSON string, and converts the resulting array
into an string. The resulting string is then returned.

• ODSReader

This class works similar to the DOCXReader. The only difference is that an array
of Sheet instances is returned by the load() method, which contains all sheets of the
document. A Sheet instance contains rows that represents the rows within a sheet.

• ODTReader

This class works exactly like the ODSReader class.

• PDFReader

The PDF content is parsed by the PdfToText library. The library gets the absolute
file path and the plain text is accessible by the Text attribute. In a final step, all non-
ASCII characters are removed by an regular expression9:

1 public function read(File $file): string {

2 $dataDir = Application::getDataDirectory();

3 $filePath = $dataDir . "/" . $file->getPath();

4 $pdf = new PdfToText($filePath);

5 $text = $pdf->Text;

6 $text = preg_replace('/[^(\x20-\x7F)]*/', '', $text);

7 return $text;

8 }

9the preg_replace() command strips all non-ASCII characters from a string and is originally from:
http://hawkee.com/snippet/4224/

49

Master’s Thesis Doğan Can Uçar

• PPTXReader

The PPTXReader class works similarly to the DOCXReader class. The difference is
that an Reader instance contains slides instead of sections. The slides contain shapes
that contain the plain text.

• TextFileReader

This class simply returns the file content that is provided by the getContent() method
of the File instance.

• XLSXReader

This class works exactly as the ODSReader class.

• XMLReader

The XMLReader class removes all XML tags with the PHP core function strip_tags()
function and returns the resulting string.

4.6.3 Term Frequency / Inverse Document Frequency
The TF-IDF measures the relevance of a single keyword within a document in which it is present
and within the whole item base, respectively. As described in Stopword Removal and Stemming
the TF-IDF algorithm helps to find stopwords and is highly language independent. Stopword
removal enables a better description of the document and makes the Content-Based Recom-
mendation component more effective.

The TF-IDF algorithm is implemented as a PHP class that gets the item and the entire item
base injected. The compute() method of the TFIDFComputer class iterates over all key-
words of an item. First the Term Frequency is calculated by dividing the number of keywords
in the document by the total number of keywords. Then, the Inverse Document Frequency
is calculated by the logarithm of the division of the number of documents in the item base by
the number of documents that contain the keyword at least once. The TF-IDF value is calcu-
lated by the multiplication of the Term Frequency value with the Inverse Document Frequency
value:

50

Master’s Thesis Doğan Can Uçar

1 public function compute() {

2 $result = new KeywordList();

3 $itemBaseSize = $this->itemList->size();

4
5 /** @var Keyword $keyword */

6 foreach ($this->item->getKeywordList() as $keyword) {

7 if (trim($keyword->getKeyword()) == "") {

8 continue;

9 }

10 $termFrequency = $this->item->countKeyword($keyword->getKeyword()) /

$this->item->keywordSize();

11 $count = $this->itemList->countKeyword($keyword->getKeyword());

12
13 if ($count == 0) {

14 $count = 1;

15 }

16
17 $inverseDocumentFrequency = log10($itemBaseSize / $count);

18 $tfIdf = $termFrequency * $inverseDocumentFrequency;

19 if ($tfIdf < 0) {

20 $tfIdf = 0;

21 }

22 $keyword->setTfIdf($tfIdf);

23 $result->add($keyword);

24 }

25 return $result;

26 }

The method returns an new instance of KeywordList that contains the keywords and the cor-
responding TF-IDF values. The KeywordList class provides the method removeStopwords()
that removes all keywords with a TF-IDF value of 0 or is less than a defined threshold. Re-
moving stopwords is implemented with the PHP core function array_filter() that accepts a
callback function which defines the rule for elements that remain in the array:

1 public function removeStopwords() {

2 $this->keywordList = array_filter($this->keywordList,

3 function (Keyword $item, string $keyword) {

4 $precision = 10;

5 $floatVal = floatval($item->getTfIdf());

6 $zero = round(0, $precision, PHP_ROUND_HALF_EVEN);

7 $tfidf = round($floatVal, $precision, PHP_ROUND_HALF_EVEN);

8 $maxTfIdfThreshold = round($this->maxTfIdf * Application::

STOPWORD_REMOVAL_PERCENTAGE, $precision, PHP_ROUND_HALF_EVEN);

9 return ($tfidf > $zero) || ($tfidf > $maxTfIdfThreshold);

10 }, ARRAY_FILTER_USE_BOTH);

11 }

51

Master’s Thesis Doğan Can Uçar

4.6.4 OverlapCoefficientComputer
The OverlapCoefficientComputer uses the Overlap Coefficient algorithm and implements
the IComputable interface. The class gets two instances of Item and a instance of KeywordList
(the keywords in a user profile) through the constructor injected.
Since the class implements IComputable, it is required to implement the compute() method.
The method first removes all stopwords as described in Term Frequency / Inverse Document
Frequency. Then, the number of common and total keywords of the item and the user profile
are determined. The smaller number of total keywords is then used below as the denominator.
The similarity depends on the numerator and denominators value:

• numerator equals to 0: there are no overlapping keywords found and the similarity equals
to 0.

• denominator equals to 0: the user profile or document has no keywords and the similarity
is 0.

• numerator and denominator are greater than 1: similarity value is the result of dividing
numerator by denominator10.

1 public function compute(): Similarity {

2 $similarity = new Similarity();

3 $tfIdf = new TFIDFComputer($this->item, $this->itemList);

4
5 /** @var KeywordList $itemKeywords */

6 $itemKeywords = $tfIdf->compute();

7 $itemKeywords->removeStopwords();

8
9 $arr = array_intersect($itemKeywords->getKeywords(), $this->

keywordList->getKeywords());

10 $arr = array_unique($arr);

11 $numerator = count($arr);

12
13 $denominator = $itemKeywords->size() > $this->keywordList->size() ? $

this->keywordList->size() : $itemKeywords->size();

14
15 if ($numerator == 0) {

16 $similarity = Util::createSimilarity(0.0, Similarity::

NO_OVERLAPPING_KEYWORDS, "no overlapping keywords found");

17 }

18
19 if ($denominator == 0) {

20 $similarity = Util::createSimilarity(0.0, Similarity::

ITEM_OR_USER_PROFILE_EMPTY, "no keywords in item / user profile")

;

21 }

22

10the factor variable is necessary for rating ranges greater than 0. More information in chapter Evaluation.

52

Master’s Thesis Doğan Can Uçar

23 if ($numerator > 0&& $denominator > 0) {

24 $factor = Rater::RATING_UPPER_LIMIT;

25 $similarity = Util::createSimilarity(($numerator / $denominator) * $

factor, Similarity::VALID, "valid calculation");

26 }

27 return $similarity;

28 }

4.7 Hybridization
After calculating the similarity values using Collaborative Filtering and Content-Based Rec-
ommendation algorithms, it is required to combine these measures in order to have a ”final”
similarity value. This value decides whether the file should be recommended or not. Different
approaches were introduced in Hybridization.
The main challenge in dealing with the hybridization is the fact that the components are cal-
culated independently from each other. More technically, all items are first used in a foreach
loop to calculate the Collaborative Filtering component. A second foreach loop is then used
again to iterate over all items and calculate the Content-Based Recommendation component.

4.7.1 HybridItem
The HybridItem is a simple getter and setter class as described in HybridItem. The class
implements a static method that calculates the weighted average:

1 public static function weightedAverage(HybridItem $hybrid): float {

2 $contentBasedResult = self::$contentBased * $hybrid->getContentBased()

->getValue();

3 $collaborativeResult = self::$collaborative * $hybrid->

getCollaborative()->getValue();

4 $weightedAverage = $hybrid->getGroupWeight() * ($contentBasedResult +

$collaborativeResult);

5 return $weightedAverage;

6
7 }

The calculation of the weighted average, which is a key part of the hybridization, is so simple,
that the decision was made on implementing it as a static class method. The function first
defines the weights of each component and returns the weighted average afterwards.

53

Master’s Thesis Doğan Can Uçar

Weighting per Group

Nextcloud users are organized in groups. For example, a company’s Nextcloud instance can
structure groups according to their departments. There can be a Research and Development,
Sales, Marketing and Engineering departments.
A Sales user is not necessarily interested in documents from users who are membered to En-
gineering, for example. Therefore, a simple matrix is implemented that defines group related
weights. The matrix defines weights for each group pair. Considering that a user can be a
member of several groups, the ”final” weight has to be a average of all group pairs:

G1 G2 G3
G1 1 0.2 0.7
G2 0.2 1 0.4
G3 0.7 0.4 1

For example, if a file that is owned by user is in G1 should be recommended to a user who is
in G2 and G3, the group weight would be calculated as:

0.2 + 0.7 + 0.4 + 1
4

= 0.575 (4.1)

This weight can be multiplied with the hybrid recommendation result described in the previous
chapter.

Recommendation Transparency

In most recommendation systems, users get recommendations without knowing why. Even if it
is not easy to define the ”why”, since there are many calculation steps to do, a basic explanation
should be provided to the user. Therefore, the app defines three basic reasons why the user
gets an item recommended:

1. Collaborative Filtering similarity value is greater than Content-Based Recommendation
value,

2. Content-Based Recommendation value is greater than Collaborative Filtering value,

3. Collaborative Filtering value is equal to Content-Based Recommendation value.

The app inserts a transparency code into the appropriate database. This code is then retrieved
by the frontend in order to display the corresponding explanation.

54

Master’s Thesis Doğan Can Uçar

1 public function getTransparencyCode(): int {

2 if (NumberUtil::compareFloat($this->collaborative->getValue(), $this->

contentBased->getValue())) {

3 return self::TRANSPARENCY_BOTH;

4 }

5 if (NumberUtil::floatGreaterThan($this->collaborative->getValue(), $

this->contentBased->getValue())) {

6 return self::TRANSPARENCY_COLLABORATIVE;

7 }

8 if (NumberUtil::floatGreaterThan($this->contentBased->getValue(), $

this->collaborative->getValue())) {

9 return self::TRANSPARENCY_CONTENT_BASED;

10 }

11 return self::TRANSPARENCY_BOTH;

12 }

4.7.2 HybridList
The HybridList class is similar to ItemList or KeywordList with a small extension. The
class implements the IteratorAggregate interface provided by the PHP core in order to make
the class iterable. The add() method adds a HybridItem to the list. The list is a two dimen-
sional array that has the user id and the item id as their indices.

1 public function add(HybridItem $hybrid, IUser $user, Item $item) {

2 $this->hybridList[$user->getUID()][$item->getId()] = $hybrid;

3 }

The getHybridByUser() method searches for a HybridItem in a list for a given user and item.
In any case the method returns an instance of HybridItem. The instance is returned from the
list if it is available. If not, the method creates a new instance without any values and returns it.

1 public function getHybridByUser(Item $item, IUser $user) {

2 if (isset($this->hybridList[$user->getUID()][$item->getId()])) {

3 return $this->hybridList[$user->getUID()][$item->getId()];

4 } else {

5 return new HybridItem();

6 }

7 }

Doing this allows avoiding the problem mentioned above that both components are calculated
in different loops. Each loop requests a HybridItem from the list. The loop does not have

55

Master’s Thesis Doğan Can Uçar

to consider the right instance or value association. Simply adding to the list after setting the
necessary values is enough. The next loop may then work with the instances that are already
present in the list:

1 ...

2 foreach($itemList as $item){

3 $hybrid = $hybridList->getHybridByUser($item, $user);

4 ...

5 $hybrid->setContentBased($sim);

6 $hybrid->setItem($item);

7 $hybrid->setUser($user);

8 $hybridList->add($hybrid, $user, $item);

9 }

4.8 Database Storage
As mentioned several times in this chapter a database is used to store some data. Since
Nextcloud supports multiple database types like MySQL, MariaDB, PostgreSQL, SQLite and
even Oracle Database, it is required to use an abstraction layer in order to access or store the
data. This section should shortly introduce the way how Nextcloud abstracts the database
access before the essential storage and data are describe in detail.

4.8.1 Doctrine Framework
Because every database storage works differently, it is required to have an abstraction layer that
makes the business code independent from the way how and where data is stored. This is what
the Doctrine Framework provides: a persistence layer and related functionality in order to sup-
port different database engines. One of the key functions of Doctrine is DQL (Doctrine Query
Language). DQL is a object oriented dialect of SQL (Structured Query Language)[DOC].

4.8.2 Table Creation and Access
To avoid multiple analysis of a file, it is necessary to store the information that the file is already
processed. Thus, the ”files_processed” database table is created. The table stores the file id,
the keyword and the corresponding TF-IDF.
The database creation is completly abstracted from the SQL layer and is realized with PHP
code. Nextcloud goes one step further and has a ”Migration Wizard” that helps in creation of
databases/tables for different Nextcloud versions.
To change a database table or create a new one it is necessary to create a class that implements
the IMigrationStep interface, which provides the changeSchema() method. The class name
has to contain a version number and a timestamp of the actual version. This timestamp is then

56

Master’s Thesis Doğan Can Uçar

used to check whether an upgrade is available or not. To perform the database upgrade it is
enough to increment the apps version number in info.xml. Nextcloud will do the remaining
work.

1 public function changeSchema(IOutput $output, \Closure $schemaClosure,

array $options) {

2 /** @var Schema $schema */

3 $schema = $schemaClosure();

4
5 if (!$schema->hasTable(DBConstants::TABLE_NAME_FILES_PROCESSED)) {

6 $table = $schema->createTable(DBConstants::TABLE_NAME_FILES_PROCESSED

);

7 $table->addColumn(DBConstants::ID, Type::BIGINT, [

8 'autoincrement' => true,

9 'notnull' => true,

10 'length' => 20,

11]);

12 $table->addColumn(DBConstants::CREATION_TS, Type::INTEGER, [

13 'notnull' => true,

14 'length' => 4,

15 'default' => 0,

16]);

17 $table->addColumn(DBConstants::FILE_ID, Type::INTEGER, [

18 'notnull' => true,

19 'length' => 4,

20 'default' => 0

21]);

22 $table->setPrimaryKey([DBConstants::ID]);

23 }

24 return $schema;

25 }

Database Access

After creating the database table, which is a one time job, an access layer is necessary in order to
read/write into the database table. This layer is created by classes that get a IDBConnection
instance injected.
The IDBConnection instance provides the getQueryBuilder() method that returns an in-
stance of QueryBuilder. This instance allows the creation of a database query using DQL as
shown in the following listing:

57

Master’s Thesis Doğan Can Uçar

1 private function insertKeyword(Keyword $keyword, IUser $user): bool {

2 if ($this->isPresentable($keyword, $user)) {

3 return true;

4 }

5 $query = $this->dbConnection->getQueryBuilder();

6 $query->insert(DbConstants::TABLE_NAME_USER_PROFILE)->values(

7 [

8 DbConstants::TB_UP_USER_ID => $query->createNamedParameter($user->

getUID()),

9 DbConstants::TB_UP_KEYWORD => $query->createNamedParameter(($

keyword->getKeyword())),

10 DbConstants::TB_UP_CREATION_TS => $query->createNamedParameter((

time())),

11 DbConstants::TB_UP_TFIDF_VALUE => $query->createNamedParameter($

keyword->getTfIdf())

12]

13);

14 try {

15 $query->execute();

16 } catch (\Exception $exception) {

17 ConsoleLogger::debug($exception->getMessage());

18 return false;

19 }

20 $lastInsertId = $query->getLastInsertId();

21 return is_int($lastInsertId);

22 }

The QueryBuilder instance provides the insert() and values() methods in order to define
the table name and the field names and values. The createNamedParamater() method is
responsible to avoid SQL injections and ensure that all values are escaped with quotation marks.
Finally, the execute method executes the query.
The getLastInsertId() method returns the last inserted auto increment value that is the pri-
mary key of the table. If the query was not successfull the method returns null. This way it is
simple to prove by verifying that the lastInsertId variable is an integer.

The QueryBuilder also provides methods to delete and select values. To delete a row in
a database it is necessary to create an expression that defines the conditions about affected
rows:

58

Master’s Thesis Doğan Can Uçar

1 public function deleteOldKeywords(int $days, IUser $user) {

2 $dateTime = new \DateTime();

3 $dateTime->modify("-$days day");

4 $query = $this->dbConnection->getQueryBuilder();

5 $query->delete(DbConstants::TABLE_NAME_USER_PROFILE)

6 ->where($query->expr()->lte(DbConstants::TB_UP_CREATION_TS, $query->

createNamedParameter($dateTime->getTimestamp())))

7 ->andWhere($query->expr()->eq(DbConstants::TB_UP_USER_ID, $query->

createNamedParameter($user->getUID())))

8 ->execute();

9 }

The delete() method accepts the table name and the where() method accepts an expression
that is defined as a equals condition in the sample above. The eq() method acceppts the field
name and the fields value that should be deleted from the table.

The select() method works similar to delete(). The only difference is that select() returns
a set of rows that have to be fetched and represented in a preferred way:

1 public function getKeywordListByUser(IUser $user) {

2 $keywordList = new KeywordList();

3 $query = $this->dbConnection->getQueryBuilder();

4 $query->select(DbConstants::TB_UP_KEYWORD, DbConstants::

TB_UP_TFIDF_VALUE)

5 ->from(DbConstants::TABLE_NAME_USER_PROFILE)

6 ->where($query->expr()->eq(DbConstants::TB_UP_USER_ID, $query->

createNamedParameter($user->getUID())));

7
8 $result = $query->execute();

9 while (false !== $row = $result->fetch()) {

10 $keyword = new Keyword();

11 $keyword->setKeyword($row[DbConstants::TB_UP_KEYWORD]);

12 $keyword->setTfIdf($row[DbConstants::TB_UP_TFIDF_VALUE]);

13 $keywordList->add($keyword);

14 }

15 $result->closeCursor();

16 return $keywordList;

17 }

Other Tables

There are several other tables that are necessary for this app. The way how these tables are
created and accessed are the same as described above. This is why it is not regarded necessary
to explain them in detail as well.

59

Chapter 5

Evaluation

5.1 Introduction
Wherears the preceding chapter Implementation discussed the implementation of the proposed
recommendation system, this chapter evaluates the expected results for users. Since there is
a limited access to test data, it is not possible to evaluate every test case in detail. For this
purpose a minimalistic test with a set of files and users was created. The test is set up with
fictional users and randomly chosen real life files.

Starting with Test Environment, the used tools, Nextcloud version and test environment in
general is described. Section Evaluation Based on Static Tags discusses results of static file
tags. These tags are ”favorites” that are given to a file by a user. This approach is more static
because it relies only on the fact that a file is tagged and does not consider when tagging
happend, for example.

This approach is developed on a git branch named ”recommendation_based_on_file_ratings”.
Section Evaluation Based on Modifications Timestamps is developed on the master branch and
is more dynamic. The user ratings are assembled by modification and tagging timestamps and
are spread over a range between 0 and 5.

In chapter State of the Art are different known problems like the ”Sparsity Problem”, ”Cold-
Start Problem”, ”Early Rater Problem” and the ”Gray Sheep Problem” discussed. Unfortu-
nately, chapter Evaluation has not addressed all these problems due to the lack of data. The
”Sparsity Problem” addresses a subset of rated items within a large item base. The ”Cold
Start Problem” is defined as users or items which are newly added to the system and have
no ratings yet. ”Early Rater Problem” applies also for users or items which are newly added
but have a few ratings where Collaborative Filtering results in inaccurate recommendations and
the ”Gray Sheep Problem” addresses people with opinions that do not consistently match with
other users. These problems require a large user and item base and the consideration of special
circumstances. For example, ”Gray Sheep Problem” requires at least one user within a user

60

Master’s Thesis Doğan Can Uçar

base with ratings that slightly overlap with the ratings of other users.
Content-Based Recommendation has also known limitations which are discussed in chapter
State of the Art. Content-Based Recommendation does not distinguish between ”good” and
”bad” content, which also applies to this work. Furthermore, two different items can be de-
scribed by (nearly) the same keywords after stopword removal and TF-IDF weighting which
leads to inaccuracy. The content-based recommendation will be ineffective when the item base
contains too much items and thus, the overlap between the user profile and items is to much.
Multimedia content, such as audio or video, were not addressed within this work and represent a
challenge in their own. The evaluation has also shown that the content-based recommendation
is inaccurate if the number of article and user profile keywords differs greatly from each other.
The sections below describe the approaches stated above in detail and show the results. These
results are compared to those of the app. This will provide valid information about the apps
reliability.

5.1.1 Test Environment
The test environment is set up on a local machine. The evaluation is based on Nextcloud 13
Beta 4 which has been cloned from GitHub on 5 January 2018.
The instance has five registered users where each user has five files that contain news from
several online newspapers and belong to different categories. It can be assumed that the users
are using Nextcloud regularly, meaning that they maintain their files and have logged in at
least once. The files - more precisely their content - represent their profile and keywords for
Content-Based Recommendation. Tagging a file as a favorite is necessary for Collaboaritve
Filtering since it represents the rating of a file from a user.
The users are Brian (interested in computer science), John (soccer), Luke (politics), Robert
(economy) and Tom (health). The following structure results:

61

Master’s Thesis Doğan Can Uçar

Brian John Luke Robert Tom
Apple buys

app develop-
ment service

Buddybuild[CBRa]

Thibaut
Courtois close

to signing
new Chelsea
deal[CBRb]

Trump lawyer
seeks to block
insider book

on White
House[CBRc]

Apple leads
race to

become world’s
first $1tn

company[CBRd]

Patients in
Africa twice
as likely to
die after an
operation

than global
average, report
shows [CBRe]

Twitter ended
the year on

a fascinating
run[CBRf]

The FA Cup is
where teams
are afforded

the chance to
dream[CBRg]

What in the
world was
Stephen
Bannon

thinking? 3
theories.[CBRh]

Bankers work
around the

clock to iron
out EU finance
reforms[CBRi]

The Guardian
view on the
NHS winter
crisis: not

such a happy
birthday [CBRj]

Instagram tests
letting users
post Stories
directly to

WhatsApp[CBRk]

Arsène
Wenger’s

referee paranoia
will chip away
at Arsenal’s

conviction[CBRl]

Ukraine: killing
of lawyer sparks
protests against

’criminal
system’[CBRm]

Good for
factories, bad
for shoppers:

a Brexit
pattern is

emerging[CBRn]

US drug firm
offers cure for

blindness –
at $425,000

an eye[CBRo]

Apple readies
Siri for the
HomePod
by adding
a podcast-

powered news
brief[CBRp]

Jürgen Klopp
says Philippe

Coutinho
will return
for Manch-
ester City

game[CBRq]

What we’ve
learned about

Trump’s
campaign
and Russia

since Trump
first denied

collusion[CBRr]

Trump tax
cut to dent
BP profits
by $1.5bn,
company

warns[CBRs]

Alcohol
can cause
irreversible

genetic damage
to stem

cells, says
study [CBRt]

Apple
Developer

Program fee
waivers are

now available
for nonprofits,
schools and

government[CBRu]

Juventus
confident of
signing Emre
Can for free
after offering

five-year
contract[CBRv]

Trump admin-
istration seeks
$18bn from
Congress for

Mexico border
wall[CBRw]

Hammond
relying on

household debt
to hit targets,

says McDonnell
[CBRx]

Doctors and
patients accuse

government
of failing to
stop NHS

crisis[CBRy]

Table 5.1: User-Files Matrix

For simplicity, the files are sequentially numbered and prefixed with a ”D” and are mentioned
by their numbers from top to down. The evaluation uses only D1 to D5 for a better overview.

62

Master’s Thesis Doğan Can Uçar

5.2 Evaluation Based on Static Tags
This section explains the results of Content-Based Recommendation and Collaborative Filtering
based on ”static favorite tags”. As explained in User Ratings, Nextcloud provides file tagging
functionality. Special kind of file tags are ”favorites” that are used by users to express a
special interest in this file. The user ratings are binary, meaning that tagging a file as favorite
corresponds to 1, otherwise to 0.

Content-Based Recommendation

The user profile keywords of each user are calculated out of all files that the user has in his
profile. It can be assumed that there no other files than listed in figure User-Files Matrix. After
removing stopwords, Brian has 829, John 674, Luke 1106, Robert 774 and Tom 919 keywords
in their user profile.
The files D1 to D5 have the following number of keywords: D1 = 63, D2 = 418, D3 = 461,
D4 = 179 and D5 = 410.

The intersection of both sets (user profile and document keywords) according to the Overlap
Coefficient described in OverlapCoefficientComputer calcuation results in the following:

John Luke Robert Tom
D1 11 11 14 10
D2 75 84 73 69
D3 79 78 62 72
D4 38 34 28 31
D5 58 70 64 55

Table 5.2: Number of Overlapping Keywords

The calculation steps are as follows:

D4 and Luke:

M = |D4 ∩ PLuke|
min(|D4|, |PLuke|)

= |179 ∩ 1106|
min(|179|, |1106|)

= 34
179

= 0, 190 (5.1)

D4 and Robert:

M = |D4 ∩ PRobert|
min(|D4|, |PRobert|)

= |179 ∩ 774|
min(|179|, |774|)

= 28
179

= 0, 156 (5.2)

D5 and Tom:

M = |D5 ∩ PRobert|
min(|D5|, |PRobert|)

= |410 ∩ 919|
min(|410|, |919|)

= 55
410

= 0, 134 (5.3)

63

Master’s Thesis Doğan Can Uçar

After applying the Overlap Coefficient to all files and users, the following table results1:

John Luke Robert Tom
D1 0,17 0,17 0,22 0,16
D2 0,18 0,20 0,17 0,17
D3 0,17 0,17 0,13 0,16
D4 0,21 0,19 0,16 0,17
D5 0,14 0,17 0,16 0,13

Table 5.3: Overlap Coefficient Results

As shown in table Overlap Coefficient Results, the calculation results in poor similarity for each
item and user. This is due to the fact that the user profiles have significantly more keywords
than the document and therefore the overlap is very small.

Collaborative Filtering

The Collaborative Filtering part of the recommendation system assumes that the ”tag as fa-
vorite” function of Nextcloud is used constantly. Therefore, the following table is assumed:

D1 D2 D3 D4 D5
Brian 0 0 1 0 1
John 1 1 0 0 0
Luke 0 1 0 ? 1

Robert 0 1 1 ? 0
Tom 1 1 1 0 ?

Table 5.4: User Ratings for D1 to D5

In User Ratings for D1 to D5, 1 corresponds to ”tagged as favorite” and 0 to ”not tagged as
favorite”. ? means ”is the file recommendable to the user”.

First, it is necessary to calculate the similarity of the files using Cosine Similarity described
as in Similarity Function. The following will demonstrate this calculation:

1Brian is not involved in the calculation because he is the owner of the files D1 to D5 and should not get
his own files recommended.

64

Master’s Thesis Doğan Can Uçar

The similarity of D1 and D2 is calculated as follows:

sim(D1, D2) = (0 ∗ 0) + (1 ∗ 1) + (0 ∗ 1) + (0 ∗ 1) + (1 ∗ 1)√
(02 + 12 + 02 + 02 + 12) ∗

√
(02 + 12 + 12 + 12 + 12)

= 2√
2 ∗

√
4

= 2
1.41 ∗ 2

= 0, 709
(5.4)

For D1 and D3:

sim(D1, D3) = (0 ∗ 1) + (1 ∗ 0) + (0 ∗ 0) + (0 ∗ 1) + (1 ∗ 1)√
(02 + 12 + 02 + 02 + 12) ∗

√
(12 + 02 + 02 + 12 + 12)

= 1√
2 ∗

√
3

= 0
1, 41 ∗ 1, 73

= 1
2, 44

= 0, 41
(5.5)

For D1 and D4:

sim(D1, D4) = (0 ∗ 0) + (1 ∗ 0) + (0 ∗ 0) + (0 ∗ 0) + (1 ∗ 0)√
(02 + 12 + 02 + 02 + 12) ∗

√
(02 + 02 + 02 + 02 + 02)

= 0√
2 ∗

√
0

= 0
(5.6)

For D1 and D5:

sim(D1, D5) = (0 ∗ 1) + (1 ∗ 0) + (0 ∗ 1) + (0 ∗ 0) + (1 ∗ 0)√
(02 + 12 + 02 + 02 + 12) ∗

√
(12 + 02 + 12 + 02 + 02)

= 0√
2 ∗

√
2

= 0
2 ∗ 2

= 0
4

= 0
(5.7)

This calculation is applied to all files. After applying Cosine Similarity to D1 to D5, the
following table results:

D1 D2 D3 D4 D5
D1 1 0,71 0,41 0 0
D2 0,71 1 0,58 0 0,35
D3 0,41 0,58 1 0 0,41
D4 0 0 0 1 0
D5 0 0,35 0,41 0 1

Table 5.5: User Ratings for D1 to D5

Next, the prediction for Luke and Robert for D4 and Tom for D5 can be calculated using the
weighted average as described in Similarity Function. The following results:

65

Master’s Thesis Doğan Can Uçar

Prediction for D4 to Luke:

PD4,Luke = (0 ∗ 0) + (0 ∗ 1) + (0 ∗ 0) + (0 ∗ 1)
|0 + 0 + 0 + 0|

= 0
0

= 0 (5.8)

Prediction for D4 to Robert:

PD4,Robert = (0 ∗ 0) + (0 ∗ 1) + (0 ∗ 1) + (0 ∗ 0)
|0 + 0 + 0 + 0|

= 0
0

= 0 (5.9)

Prediction for D5 to Tom:

PD5,T om = (0 ∗ 1) + (0, 35 ∗ 1) + (0, 41 ∗ 1) + (0 ∗ 0)
|0 + 0, 35 + 0, 41 + 0|

= 0, 76
0, 76

= 1 (5.10)

Hybridization

After computing the Content-Based Recommendation and Collaborative Filtering components,
the hybridization step has to be made. Both values are combined to hybrid recommendation
using the weighted average as described in Weighted Average. It can be assumed that both,
Content-Based Recommendation and Collaborative Filtering, are weighted with 0.5 each. In
addition to that a final recommendation is only made if the result exceeds a threshold. It can
also be assumed that the group weights described in Weighting per Group are all equal to 1 in
order to keep a better overview. Because multiplying with 1 does not change the result, the
calculation is ignored in the following examples.

Content-Based Recommendation has calculated a similarity value of 0,19 for Lukes user profile
and D4. Collaborative Filtering predicts that Luke won’t rate D4. Therefore, the calcuation is
as follows:

(wcbr ∗ valuecbr) + (wcf ∗ valuecf) = (0, 5 ∗ 0, 19) + (0.5 ∗ 0) = 0, 095 (5.11)

The same calculation is made for D4 and Robert:

(wcbr ∗ valuecbr) + (wcf ∗ valuecf) = (0, 5 ∗ 0, 16) + (0.5 ∗ 0) = 0, 080 (5.12)

D5 and Tom:

(wcbr ∗ valuecbr) + (wcf ∗ valuecf) = (0, 5 ∗ 0, 13) + (0.5 ∗ 1) = 0, 565 (5.13)

The hybridization step has to decide whether the file is going to be recommended to a user or
not. Therefore, a threshold has to be chosen in order to make this decision. Assuming that the
threshold is 0.5, only D5 would be recommended to Tom.

66

Master’s Thesis Doğan Can Uçar

5.3 Evaluation Based on Modifications Timestamps
This section explains the results of Content-Based Recommendation and Collaborative Filtering
based on modification timestamps. The user ratings are assembled by last modification and
tagging timestamps and spread over a range between 0 and 5 as described in User Ratings.
The following evaluation works with the same files as described in Evaluation Based on Static
Tags.

5.3.1 Content Based Recommendation
Content Based Recommendation works similar as described in Evaluation Based on Static Tags
except one deviation. Since the Overlap Coefficient measures the similarity of two items in
the range of 0 and 1, but Cosine Computer as demonstrated below can compute over greater
ranges (in this case 0 and 5), it is required to adjust the range in order to have the same scale.
Therefore, a factor is introduced and set to 5, which is the highest possible rating for an item
in this evaluation approach.

Content Based Recommendation for D2 and Tom is calculated as follows:

M = |D2 ∩ PT om|
min(|D2|, |PT om|)

∗ 5 = 0, 17 ∗ 5 = 0, 85 (5.14)

D2 and Robert:

M = |D2 ∩ PRobert|
min(|D2|, |PRobert|)

∗ 5 = 0, 17 ∗ 5 = 0, 85 (5.15)

D3 and Luke:

M = |D3 ∩ PLuke|
min(|D2|, |PRobert|)

∗ 5 = 0, 17 ∗ 5 = 0, 85 (5.16)

D3 and Robert:

M = |D3 ∩ PRobert|
min(|D2|, |PRobert|)

∗ 5 = 0, 13 ∗ 5 = 0, 65 (5.17)

D4 and Luke:

M = |D4 ∩ PRobert|
min(|D2|, |PRobert|)

∗ 5 = 0, 19 ∗ 5 = 0, 95 (5.18)

D4 and Robert:

M = |D4 ∩ PRobert|
min(|D2|, |PRobert|)

∗ 5 = 0, 16 ∗ 5 = 0, 80 (5.19)

67

Master’s Thesis Doğan Can Uçar

D4 and Tom:

M = |D4 ∩ PRobert|
min(|D2|, |PRobert|)

∗ 5 = 0, 17 ∗ 5 = 0, 85 (5.20)

D5 and Tom:

M = |D5 ∩ PRobert|
min(|D2|, |PRobert|)

∗ 5 = 0, 13 ∗ 5 = 0, 65 (5.21)

After applying the Overlap Coefficient to all files and users, the following results2:

John Luke Robert Tom
D1 0,85 0,85 1,10 0,80
D2 0,90 1,00 0,85 0,85
D3 0,85 0,85 0,65 0,80
D4 1,05 0,95 0,80 0,85
D5 0,70 0,85 0,80 0,65

Table 5.6: Overlap Coefficient Computer Results

As shown in Evaluation Based on Static Tags, the Content-Based Recommendation calculation
for this approach results in poor similarity for each item and user as well. This is also due to
the fact that the keyword ratio of user profile and document is disproportionately.

5.3.2 Collaborative Filtering
The Collaborative Filtering part of the recommendation system uses modification and favorite
tagging timestamps in order to define ratings. The rating range is between 0 and 5 as described
in User Ratings. The ratings are as follows:

D1 D2 D3 D4 D5
Brian 1 5 4 3 2
John 2 4 4 3 0
Luke 1 3 0 2 1

Robert 5 0 0 2 5
Tom 4 0 2 0 3

Table 5.7: User Ratings for D1 to D5 (2)

The user ratings are spread over a range of 0 to 5 where 0 correspondents to ”no rating” and
5 to the highest possible rating. The Collaborative Filtering part predicts ratings for user-item

2notice that Brian is not involved in the calculation because he is the owner of the files D1 to D5

68

Master’s Thesis Doğan Can Uçar

tupels that have no ratings. These tuples are highlighted in User Ratings for D1 to D5 (2) with
red color.

The similarity for D1/D2, D1/D3, D1/D4 and D1/D5 using Cosine Similarity is calcu-
lated as follows:

sim(D1, D2) = (1 ∗ 5) + (2 ∗ 4) + (1 ∗ 3) + (5 ∗ 0) + (4 ∗ 0)√
(12 + 22 + 12 + 52 + 42) ∗

√
(52 + 42 + 32 + 02 + 02)

= 16√
47 ∗

√
50

= 16
6, 86 ∗ 7, 07

= 16
48, 50

= 0, 33
(5.22)

sim(D1, D3) = (1 ∗ 4) + (2 ∗ 4) + (1 ∗ 0) + (5 ∗ 0) + (4 ∗ 2)√
(12 + 22 + 12 + 52 + 42) ∗

√
(42 + 42 + 02 + 02 + 22)

= 20√
47 ∗

√
36

= 20
6, 86 ∗ 6

= 20
41, 16

= 0, 49
(5.23)

sim(D1, D4) = (1 ∗ 3) + (2 ∗ 3) + (1 ∗ 2) + (5 ∗ 2) + (4 ∗ 0)√
(12 + 22 + 12 + 52 + 42) ∗

√
(32 + 32 + 22 + 22 + 02)

= 21√
47 ∗

√
26

= 21
6, 86 ∗ 5, 10

= 21
34, 94

= 0, 60
(5.24)

sim(D1, D5) = (1 ∗ 2) + (2 ∗ 0) + (1 ∗ 1) + (5 ∗ 5) + (4 ∗ 3)√
(12 + 22 + 12 + 52 + 42) ∗

√
(22 + 02 + 12 + 52 + 32)

= 40√
47 ∗

√
39

= 40
6, 86 ∗ 6, 24

= 40
42, 81

= 0, 93
(5.25)

The calculation is applied to all files and the resulting similarities are as follows:

D1 D2 D3 D4 D5
D1 1 0,33 0,49 0,60 0,93
D2 0,33 1 0,85 0,92 0,29
D3 0,49 0,85 1 0,78 0,37
D4 0,60 0,92 0,78 1 0,57
D5 0,93 0,29 0,37 0,57 1

Table 5.8: User Ratings for D1 to D5 (2)

Next, the prediction for Luke and Robert for D4 and Tom for D5 can be calculated using the
weighted average as described in Similarity Function. The following results:

69

Master’s Thesis Doğan Can Uçar

Prediction for D2 to Tom:

PD2,T om = (0, 33 ∗ 4) + (0, 85 ∗ 2) + (0, 92 ∗ 0) + (0, 29 ∗ 3)
|0, 33 + 0, 85 + 0, 92 + 0, 29|

= 3, 89
2, 39

= 1, 63 (5.26)

Prediction for D2 to Robert:

PD2,Robert = (0, 33 ∗ 5) + (0, 85 ∗ 0) + (0, 92 ∗ 2) + (0, 29 ∗ 5)
|0, 35 + 0, 84 + 0, 91 + 0, 29|

= 4, 94
2, 39

= 2, 07 (5.27)

Prediction for D3 to Luke:

PD3,Luke = (0, 49 ∗ 1) + (0, 84 ∗ 3) + (0, 78 ∗ 2) + (0, 37 ∗ 1)
|0, 51 + 0, 84 + 0, 78 + 0, 37|

= 4, 96
2, 5

= 1, 98 (5.28)

Prediction for D3 to Robert:

PD3,Robert = (0, 51 ∗ 5) + (0, 85 ∗ 0) + (0, 78 ∗ 2) + (0, 37 ∗ 5)
|0, 51 + 0, 84 + 0, 78 + 0, 37|

= 5, 96
2, 5

= 2, 38 (5.29)

Prediction for D4 to Luke:

PD4,Luke = (0, 60 ∗ 1) + (0, 92 ∗ 3) + (0, 78 ∗ 0) + (0, 55 ∗ 1)
|0, 59 + 0, 91 + 0, 78 + 0, 55|

= 3, 87
2, 83

= 1, 36 (5.30)

Prediction for D4 to Robert:

PD4,Robert = (0, 59 ∗ 5) + (0, 91 ∗ 0) + (0, 78 ∗ 0) + (0, 57 ∗ 5)
|0, 59 + 0, 91 + 0, 78 + 0, 57|

= 5, 80
2, 85

= 2, 04 (5.31)

Prediction for D4 to Tom:

PD4,T om = (0, 59 ∗ 4) + (0, 91 ∗ 0) + (0, 78 ∗ 2) + (0, 57 ∗ 3)
|0, 51 + 0, 84 + 0, 78 + 0, 37|

= 5, 63
2, 85

= 1, 98 (5.32)

Prediction for D5 to Tom:

PD5,T om = (0, 93 ∗ 4) + (0, 29 ∗ 0) + (0, 37 ∗ 2) + (0, 57 ∗ 3)
|0, 93 + 0, 29 + 0, 37 + 0, 55|

= 6, 17
2, 14

= 2, 87 (5.33)

Hybridization

Hybrid recommendation using the weighted average as described in Weighted Average is applied
to all items and users in order to have a final recommendation. Content-Based Recommendation
and Collaborative Filtering are weighted equally with 0.5. It is assumed that the recommendation
is made if the result exceeds a given threshold and the group weights are all equal to 1 in order to
keep a better overview. Because multiplying with 1 does not change the result, the calculation

70

Master’s Thesis Doğan Can Uçar

is ignored in the following examples.
Content-Based Recommendation has calculated a similarity value of 0,85 for Toms user profile
and D2. Collaborative Filtering predicts that Tom would rate D2 with 1,63. Therefore, the
calcuation is as follows:

(wcbr ∗valuecbr)+(wcf ∗valuecf) = (0, 5∗0, 85)+(0.5∗1, 63) = 0, 425+0, 815 = 1, 24 (5.34)

D2 and Robert:

(wcbr ∗valuecbr)+(wcf ∗valuecf) = (0, 5∗0, 85)+(0.5∗2, 07) = 0, 425+1, 035 = 1, 46 (5.35)

D3 and Luke:

(wcbr ∗valuecbr)+(wcf ∗valuecf) = (0, 5∗0, 85)+(0.5∗1, 98) = 0, 425+0, 99 = 1, 415 (5.36)

D3 and Robert:

(wcbr ∗valuecbr)+(wcf ∗valuecf) = (0, 5∗0, 65)+(0.5∗2, 38) = 0, 325+1, 19 = 1, 515 (5.37)

D4 and Luke:

(wcbr ∗valuecbr)+(wcf ∗valuecf) = (0, 5∗0, 95)+(0.5∗1, 36) = 0, 475+0, 68 = 1, 155 (5.38)

D4 and Robert:

(wcbr ∗valuecbr)+(wcf ∗valuecf) = (0, 5∗0, 80)+(0.5∗2, 04) = 0, 40+1, 02 = 1, 42 (5.39)

D4 and Tom:

(wcbr ∗valuecbr)+(wcf ∗valuecf) = (0, 5∗0, 85)+(0.5∗1, 98) = 0, 425+0, 99 = 1, 415 (5.40)

D5 and Tom:

(wcbr ∗valuecbr)+(wcf ∗valuecf) = (0, 5∗0, 65)+(0.5∗2, 87) = 0, 325+1, 435 = 1, 76 (5.41)

The hybridization result depends on a threshold that has to be exceeded in order to get recom-
mended to an user. For example, if the threshold would be 1 for the examples above, all items
would be recommended to the users except of example 5.39. The items 5.37, 5.38 and 5.41
would be recommended if the threshold would be set to 1,5.

5.4 Graphical User Interface
Creating recommendations and storing them into a data storage was the main part of the re-
sulting app. The most important part from the perspective of usability is the way how providing
the information to the user.

71

Master’s Thesis Doğan Can Uçar

This question was discussed in several meetings with Nextcloud core developers as well as the
managing director. The decision was made on a grid view3 in order to show the recommenda-
tions. The grids are only visible in the root folder and are limited to three recommendations.
The single items are clickable which opens the documents.

Figure 5.1: Nextcloud Root Folder with three recommendations

5.5 Defining Weights and Thresholds
In chapter CosineComputer, Term Frequency / Inverse Document Frequency and before in-
serting recommendations into the appropriate database there are three different thresholds to
exceed. The first threshold removes all items from the list which are not regarded as similar.
This way only the most similar items are used to make a prediction to a user. The second
threshold removes keywords whose TF-IDF value do not exceed a given threshold (stopword
removal) and the last one is a threshold that has to be exceeded by an item in order to get
considered as a ”recommendation”.
Moreover, in the hybridization step both, Collaborative Filtering and Content Based Recommen-
dation, are weighted and have to be defined in advance. In Evaluation Based on Modifications
Timestamps - one of two evaluation attemps - are modification and tagging time stamps also
gathered to an rating using weights.

3Grid views are not supported in Nextcloud 13. Therefore, it was required to create a separate stylesheet
file in order to define the CSS classes.

72

Master’s Thesis Doğan Can Uçar

5.5.1 Threshold
It is not easy to define a threshold as they depend on different factors. In the previous section
Content-Based Recommendation and Collaborative Filtering approaches are evaluated in detail.
Taking a closer look at the evaluation, one will find that the Content-Based Recommendation
results are always not sufficient. This is due to the fact that in all cases the number of keywords
in a user profile is higher than the number of keywords in a document. Therefore, the number
of overlapping keywords is not high and the Overlap Coefficient will always divide a small
number by a big number. Therefore, the threshold value should be a small value.
The thresholds for Cosine Computer and keyword removal have to be defined intuitive. Ideally,
those threshold values are calculated as an average out of test data. However, because this is
not possible yet, the threshold for the Cosine Computer is set to 0.5 and for keyword removal
to the 1/3 value of the highest TF-IDF value in the list.

5.5.2 Weights
Based on the results of the Content-Based Recommendation described in Threshold, the weights
for hybridization are set to 0.75 for Collaborative Filtering and 0.25 for Content-Based Recom-
mendation.
In case of ratings that are gathered out of modification time stamps, the weights for editing a
file is set to 0.75 and tagging to 0.25. This approach assumes that editing a file is more often
and therefore more expressive than tagging as favorite.

73

Chapter 6

Relation to Accessibility

6.1 Introduction
The masters programme ”Barrierefreie Systeme / Intelligente Systeme” is structured in a special
way. The course consists of three faculties: the first one is ”Planen und Bauen” (Planning and
Building) and is addresses architects. The second faculty is ”Intelligente Systeme” (intelligent
systems) and addresses computer scientists. The last one is ”Case Management” (case man-
agement) and adresses students, who studied a human health and social work activities related
bachelor course.

Each faculty has its own schedule of module and teaches in the specific area. In addition,
there is one course per semester in which all students of all faculties work on mutual projects.
These courses count more than the faculty specific courses. The main goal of these projects is
focused on working interdisciplinary on accessible (barrier-free) systems.

6.2 Recommender Systems in the Context of Accessiblity
Barrier-free systems should enable people to have an independent and and self-determined life,
despite age and health or functional restrictions of any sort. This chapter should reflect the
recommendation system, which was described in chapter State of the Art and Implementation,
under these aspects.

Many people suffer from visual impairment or have other kinds of cognitive restrictions such
as perception, attention, memory, action planning, judgement, problem solving and commu-
nication. Recommendation systems can help people with visual impairments. Considering a
Nextcloud instance where many files are up and downloaded and shared with users, the recom-
mendation system can help to filter the most interesting files and arrange files further above or
in a separate section. In doing so, the user gets less files listed in his profile. Unfortunately,
the proposed recommendation system cannot help blind people since the recommender system
does not output speech yet.

74

Master’s Thesis Doğan Can Uçar

Hearing-impaired people do not necesseraily benefit from a recommendation system. There
is no speech output from the recommendation system and thus, the users cannot benefit from
the whole functionality. Since the system filters interesting files and may arrange them further
above in a list, people with hearing impairments benefit from this arrangement.

In case of cognitive limitations, where people have problems with learning and understand-
ing, can also benefit of a recommendation system.
An example of this is figure Nextcloud Root Folder with three recommendations. The figure
shows the recommendations UI. The UI contains three recommended files for the user. This
can help users not feel overrun and find files they like easier.

75

Chapter 7

Conclusion

7.1 Summary
In chapter Introduction the intention and motivation for this thesis was explained. The sub-
sequent chapter Requirements Analysis describes the requirements from the perspective of
software engineering. Moreover, the section introduces the Nextcloud and Nextcloud app soft-
ware architecture. Section State of the Art profoundly describes the scientific state of the art
and arguments the usage scientific method. In chapter Implementation are general conditions
and the structure of the recommender system introduced. The implementation is based on
the evaluation of the previous chapter. Chapter Evaluation appraises the results in an local
environment with fictional users and files and chapter Relation to Accessibility establishes a
relation of a recommender system to accessibility.

The resulting software will be released on GitHub on a date after submitting the thesis. The
probability of further development is very high and thus the progress can be seen on my GitHub
account @doganoo.
All necessary documents and files of the thesis are submitted on a CD which includes the project
as well as the Git history.

7.2 Results
For various reasons writing this thesis was quite a challenge for me. I joined the Nextcloud
GmbH company only to profoundly finish the masters programme. The company offered a
completely different way of working, in which I was fully on my own and was able to work from
home. Creating an app as a master’s thesis was also something new for Nextcloud since they
had never supervised a thesis before. This has not always been easy, as the views sometimes
diverged but in general, it was a great cooperation and also a professional and personal experi-
ence.
The thesis is also the first attempt in research and implementation of a machine learning project
(or at least, a related topic). Realising the implementation with PHP, a programming language

76

Master’s Thesis Doğan Can Uçar

not known for performance, has also been a challenge. But at least for smaller amounts of data
this went well.
For the methods used, there are no officialy known APIs available. This means that the recom-
mendation system is completely implemented by myself after finishing the scientific research.
This went very well because object orientation is supported by recent versions of PHP and has
helped me to structure the code.
In addition to the challenges of the programming language, the app was implemented as a
Nextcloud app. The challenge in doing this was my lack of knowledge of this framework as I
have never implemented a Nextcloud app before. Due to the supportive Nextcloud team and
core developers this implementation also went well. They helped me wherever it was stagnating
and therefore the process of getting familiar with the framework was quite simple.
Unfortunately the effectiveness of the resulting recommendation system was not measurable due
to a lack of data and users. The effectiveness of such a system is rather subjective. A longer
testing phase for a reliable case study would thus be needed. Within the time of research and
writing this thesis, a longer testing phase was impossible. The evaluation is therefore limited
to a smaller test case in order to compare the results of the app with the calculations by hand.
The evaluation was based on two main methods: static file tags (favorites) and modification
time stamps of files. Where the first method had a binary rating range (0 or 1), the second
method was based on time stamp ranges which were classified in a range from 0 to 5. The
second method has proven to be more suitable due to two reasons: First, the user has not
to maintain his favorite tags. The daily work (opening/modifying) with files is the only ac-
tion required for recommendations. Second, the range from 0 to 5 provides more accuracy as
thresholds can be chosen flexible.
Another result that is more personal than scientific is the experience with GitHub, where I had
the chance to discuss features in public1, create pull requests2 and fork an entire project3.

7.3 Future Work
Among other factors, the success of recommendation systems depend on the selection of the
correct weight and threshold values. Further research for binary scales must be done. This
is necessary to find out whether it is sufficient to define the threshold value as 0.5. It is also
important to find out whether the component of Content-Based Recommendation or Collabo-
rative Filtering has more accuracy.
The recommendation system explained in the previous chapters can be extended with learning
algorithms in order to define thresholds and weights. Doing this, the system can scale over time
and adjust the thresholds to the proper value. In doing so, the user can be asked for feedback
(a question like ”Did this recommendation help you?”). Other metrics, such as measuring user
behaviour, can also be used as a feedback tool. One of these metrics exemplarily is the amount
of time in which a recommended file is looked at or kept in a user’s profile.

1https://github.com/nextcloud-gmbh/recommendation_assistant/issues/1
2https://github.com/smalot/pdfparser/pull/184
3https://github.com/doganoo/PdfToText

77

The recommendation system which is further explained in this thesis assembles keywords dy-
namically from files that are owned or shared with a user. These keywords are considered as
”describing keywords” of a user’s profile. However, there is no opportunity to influence the
keyword assembly yet. The user can neither black nor whitelist keywords nor define new ones
by himself. This procedure would help understanding the user’s interests more and thus in-
creases the quality of recommendations. User defined keywords in this case could be given
more importance.
Furthermore, the evaluation has shown that if user profiles have too many keywords, the rec-
ommendation results for Content-Based Recommendation are poor. Therefore, the number of
keywords have to be limited to a certain amount of keywords. This can be achieved during the
Overlap Coefficient calculation by limiting the number of user profile keywords to the number
of item keywords or vice versa.

Nextcloud offers many other features, such as (automated) file tagging, comments, sharing
and activities. Tags and comments can be considered as some kind of ”content” and can be
used for Content-Based Recommendation. Since tags are also some kind of ”content”, they
are very suitable for this purpose. Comments represent additional descriptive ”content” and are
also very suitable for Content-Based Recommendation.

Test data was not available during the writing and research process of this thesis. It was
therefore not possible to test the system with a large amount of data. A further challenging
project will be the evaluation and optimization of the proposed system under this aspect.

Glossary

Activity App Nextcloud’s Activity App shows recent activities
on the server, such as file creation or deletions.

AGPLv3 Affero General Public License version 3 is a free
software license.

AI Artificial Intelligence is intelligence demon-
strated by machines.

AJAX Asynchronous JavaScript And XMLHttpRequest
is a way creating asynchronous web requests.

Amazon.com Amazon.com is an electronic commerce and
cloud computing company which uses Collabo-
rative Filtering heavily for recommendations.

API Application Programming Interface defines a set
of protocols and services in order to build soft-
ware.

Bag-of-Words In Bag-of-Words, a text is represented as the
bag and each word together with the number
of occurance is represented uniquely within the
bag.

Bayesian Networks Bayesian Networks represents a probabilistic
model to represent a set of variables and their
dependencies.

CalDAV Calendaring Extension to WebDAV is a protocol
to access scheduling (calendar) information on a
server.

CardDAV vCard Extension to WebDAV is a protocol to ac-
cess address book information on a server.

Command Line Interface Command Line Interface accepts program re-
lated commands via a shell.

Composer Composer is a package manager for PHP which
provides format for PHP dependencies and li-
braries.

79

Contributor License Agreement The Contributor License Agreement defines the
conditions under which contributions are made
to a project.

Cron Cron is a time-based job scheduler on a local
server.

Design Pattern A design pattern is a re-usable form of a solution
to a problem.

Dropbox Dropbox is a file hosting and synchronisation ser-
vice provided by the company Dropbox.

End-To-End Encryption End-to-end encryption is way of communication
where only the communicating participants can
read the messages.

Fork Creating a new project from an existing project.

Git Git is version control system for tracking changes
in software projects.

Git Branch Branches in version control systems diverges
from the main line (usually called master) and
continue to work without messing the master.

GitHub GitHub is a web-based hosting service for source
code version control using git.

Google Drive Google Drive is a file storage and synchronisation
service provided by Google.

Grid View Grid views display items in a multiple-
dimensional grid which usually provides clicking,
dragging or replacing.

GroupLens GroupLens was one first study about recommen-
dation systems.

HTML Hypertext Markup Language is a markup lan-
guage to create web applications and pages.

HTTP Hypertext Transfer Protocol is the foundation of
data communication for the internet.

JavaScript a programming language usually combined with
HTML and CSS in order to create a web fron-
tend.

Linear Regression Linear Regression is a linear approach for mod-
elling the relationship between two variables X
and Y.

Machine Learning Machine Learning gives computers the ability to
learn without being explicitly programmed.

MariaDB MariaDB is a fork of MySQL intended to remain
under a free license.

Markov Decision Process Provides a mathematical framework for modeling
decision making.

MySQL MySQL is an open source relational database
management system.

Natural Language Processing Natural Language Processing is a research field
related to the interaction between machines and
humans using human language.

Netflix Netflix is an entertainment company and pro-
vides video-on-demand media online.

Neural Networks Artificial Neural Networks are computing models
inspired by biological neural networks.

Nextcloud App Store Nextcloud’s app store where apps are available
to download and install.

Object Oriented Programming Object Oriented Programming is a paradigm
based on the concept of represent everything as
an ”object”.

Oracle Database Oracle Database is a commercial multi-model
database management system by Oracle Inc.

ownCloud ownCloud is an open source file sharing and
synchronization software and the predecessor of
Nextcloud.

ownCloud Console ownCloud Console is ownCloud’s/Nextcloud’s
command line interface.

PHP PHP is a server-side scripting programming lan-
guage designed for web-development.

PostgreSQL PostgreSQL is an object relational database
management system.

Pull Request When contributing to an project managed with
a version control system, users make usually a
pull request in order to merge the changes to
the main project.

RESTful Representational State Transfer allows request-
ing and manipulating textual representations of
web resources.

Schlag den Raab Schlag den Raab was a live german show where
a candidate had to beat the moderator Stefan
Raab in a number of disciplines.

Set A Set is defined as objects that allow easy de-
termination whether an object is already present
or not. Several ways, such as using arrays with
hashed keys, are available.

Shazam Shazam application can identify music among
others based on a short sample.

Shell The Shell, typically for Unix-like operation sys-
tems, is the command line user interface to in-
teract with the operating system.

Single Value Composition Single Value Composition is the factorization of
a real or complex matrix.

SQLite SQLite is a relational database management sys-
tem and works usually embedded into the appli-
cation.

Support Vector Machines Support Vector Machines are supervides learning
models for classification and regression analysis.

Symfony Symfony is a PHP based library for creating web
applications.

Sync-Client A client to synchronize remote content with a
device and vice versa.

UI User Interface (UI) in context of web applications
is usually referred to HTML that provides input
and shows output to the underlying system.

UML Unified Modeling Language is a modeling lan-
guage to visualize the design of a system.

URL Uniform Resource Locator is a reference to a web
resource within a computer network and is usu-
ally known as web address.

Web 2.0 In Web 2.0, users not only consume web content
but also generate it. Web 2.0 is also known as
social media.

Webcron Webcron is a time-based job scheduler on a re-
mote server.

WebDAV WebDAV is an extension to HTTP that allows
remote clients to access/change web content.

Bibliography

[AT05] Adomavicius, Gediminas ; Tuzhilin, Alexander: Toward the Next Gener-
ation of Recommender Systems: A Survey of the State-of-the-Art and Possi-
ble Extensions. In: IEEE Trans. on Knowl. and Data Eng. 17 (2005), Juni,
Nr. 6, 734–749. http://dx.doi.org/10.1109/TKDE.2005.99. – DOI
10.1109/TKDE.2005.99. – ISSN 1041–4347

[AWWY99] Aggarwal, Charu C. ; Wolf, Joel L. ; Wu, Kun-Lung ; Yu, Philip S.: Horting
Hatches an Egg: A New Graph-theoretic Approach to Collaborative Filtering. In:
Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. New York, NY, USA : ACM, 1999 (KDD ’99). –
ISBN 1–58113–143–7, 201–212

[BHC98] Basu, Chumki ; Hirsh, Haym ; Cohen, William: Recommendation as Classifi-
cation: Using Social and Content-Based Information in Recommendation. In: In
Proceedings of the Fifteenth National Conference on Artificial Intelligence, AAAI
Press, 1998, S. 714–720

[BHK98] Breese, John S. ; Heckerman, David ; Kadie, Carl: Empirical Analysis of
Predictive Algorithm for Collaborative Filtering. In: Proceedings of the 14 th
Conference on Uncertainty in Artificial Intelligence, 1998, S. 43–52

[BoW] https://en.wikipedia.org/wiki/Bag-of-words_model

[BP98] Billsus, Daniel ; Pazzani, Michael J.: Learning Collaborative Information Fil-
ters. In: Proceedings of the Fifteenth International Conference on Machine Learn-
ing. San Francisco, CA, USA : Morgan Kaufmann Publishers Inc., 1998 (ICML
’98). – ISBN 1–55860–556–8, 46–54

[BPC00] Billsus, Daniel ; Pazzani, Michael J. ; Chen, James: A Learning Agent for
Wireless News Access. In: Proceedings of the 5th International Conference on
Intelligent User Interfaces. New York, NY, USA : ACM, 2000 (IUI ’00). – ISBN
1–58113–134–8, 33–36

[Bur02] Burke, Robin: Hybrid Recommender Systems: Survey and Experiments.
In: User Modeling and User-Adapted Interaction 12 (2002), Nov, Nr. 4,

84

http://dx.doi.org/10.1109/TKDE.2005.99
https://en.wikipedia.org/wiki/Bag-of-words_model

331–370. http://dx.doi.org/10.1023/A:1021240730564. – DOI
10.1023/A:1021240730564. – ISSN 1573–1391

[Bur07] Burke, Robin: The Adaptive Web. Version: 2007. http://dl.acm.

org/citation.cfm?id=1768197.1768211. Berlin, Heidelberg : Springer-
Verlag, 2007. – ISBN 978–3–540–72078–2, Kapitel Hybrid Web Recommender
Systems, 377–408

[CBRa] https://techcrunch.com/2018/01/02/apple-buys-app-

development-service-buddybuild/

[CBRb] https://www.theguardian.com/football/2018/jan/04/

thibaut-courtois-close-to-signing-new-chelsea-deal

[CBRc] https://www.washingtonpost.com/politics/trump-slams-

bannon-when-he-was-fired-he-not-only-lost-his-job-

he-lost-his-mind/2018/01/03/21fb158a-f0aa-11e7-b3bf-

ab90a706e175_story.html?utm_term=.cd5d63f8d13c

[CBRd] https://www.theguardian.com/business/2018/jan/03/apple-

leads-race-to-become-world-first-1tn-dollar-company

[CBRe] https://www.theguardian.com/society/2018/jan/03/

patients-in-africa-twice-as-likely-to-die-after-an-

operation-than-global-average-report-shows

[CBRf] https://techcrunch.com/2017/12/31/twitter-ended-the-

year-on-a-fascinating-run/

[CBRg] https://www.theguardian.com/football/blog/2018/jan/04/

liam-rosenior-fa-cup-romance-as-teams-have-chance-to-

dream

[CBRh] https://www.washingtonpost.com/news/the-fix/wp/2018/

01/04/what-in-the-world-was-steve-bannon-thinking-3-

theories/?tid=pm_politics_pop&utm_term=.4a18d47927db

[CBRi] https://www.theguardian.com/business/2018/jan/02/eu-

bankers-work-around-the-clock-ahead-of-launch-of-

mifid-ii-reforms

[CBRj] https://www.theguardian.com/commentisfree/2018/jan/03/

the-guardian-view-on-the-nhs-winter-crisis-not-such-a-

happy-birthday

[CBRk] https://techcrunch.com/2018/01/03/instaapp/

http://dx.doi.org/10.1023/A:1021240730564
http://dl.acm.org/citation.cfm?id=1768197.1768211
http://dl.acm.org/citation.cfm?id=1768197.1768211
https://techcrunch.com/2018/01/02/apple-buys-app-development-service-buddybuild/
https://techcrunch.com/2018/01/02/apple-buys-app-development-service-buddybuild/
https://www.theguardian.com/football/2018/jan/04/thibaut-courtois-close-to-signing-new-chelsea-deal
https://www.theguardian.com/football/2018/jan/04/thibaut-courtois-close-to-signing-new-chelsea-deal
https://www.washingtonpost.com/politics/trump-slams-bannon-when-he-was-fired-he-not-only-lost-his-job-he-lost-his-mind/2018/01/03/21fb158a-f0aa-11e7-b3bf-ab90a706e175_story.html?utm_term=.cd5d63f8d13c
https://www.washingtonpost.com/politics/trump-slams-bannon-when-he-was-fired-he-not-only-lost-his-job-he-lost-his-mind/2018/01/03/21fb158a-f0aa-11e7-b3bf-ab90a706e175_story.html?utm_term=.cd5d63f8d13c
https://www.washingtonpost.com/politics/trump-slams-bannon-when-he-was-fired-he-not-only-lost-his-job-he-lost-his-mind/2018/01/03/21fb158a-f0aa-11e7-b3bf-ab90a706e175_story.html?utm_term=.cd5d63f8d13c
https://www.washingtonpost.com/politics/trump-slams-bannon-when-he-was-fired-he-not-only-lost-his-job-he-lost-his-mind/2018/01/03/21fb158a-f0aa-11e7-b3bf-ab90a706e175_story.html?utm_term=.cd5d63f8d13c
https://www.theguardian.com/business/2018/jan/03/apple-leads-race-to-become-world-first-1tn-dollar-company
https://www.theguardian.com/business/2018/jan/03/apple-leads-race-to-become-world-first-1tn-dollar-company
https://www.theguardian.com/society/2018/jan/03/patients-in-africa-twice-as-likely-to-die-after-an-operation-than-global-average-report-shows
https://www.theguardian.com/society/2018/jan/03/patients-in-africa-twice-as-likely-to-die-after-an-operation-than-global-average-report-shows
https://www.theguardian.com/society/2018/jan/03/patients-in-africa-twice-as-likely-to-die-after-an-operation-than-global-average-report-shows
https://techcrunch.com/2017/12/31/twitter-ended-the-year-on-a-fascinating-run/
https://techcrunch.com/2017/12/31/twitter-ended-the-year-on-a-fascinating-run/
https://www.theguardian.com/football/blog/2018/jan/04/liam-rosenior-fa-cup-romance-as-teams-have-chance-to-dream
https://www.theguardian.com/football/blog/2018/jan/04/liam-rosenior-fa-cup-romance-as-teams-have-chance-to-dream
https://www.theguardian.com/football/blog/2018/jan/04/liam-rosenior-fa-cup-romance-as-teams-have-chance-to-dream
https://www.washingtonpost.com/news/the-fix/wp/2018/01/04/what-in-the-world-was-steve-bannon-thinking-3-theories/?tid=pm_politics_pop&utm_term=.4a18d47927db
https://www.washingtonpost.com/news/the-fix/wp/2018/01/04/what-in-the-world-was-steve-bannon-thinking-3-theories/?tid=pm_politics_pop&utm_term=.4a18d47927db
https://www.washingtonpost.com/news/the-fix/wp/2018/01/04/what-in-the-world-was-steve-bannon-thinking-3-theories/?tid=pm_politics_pop&utm_term=.4a18d47927db
https://www.theguardian.com/business/2018/jan/02/eu-bankers-work-around-the-clock-ahead-of-launch-of-mifid-ii-reforms
https://www.theguardian.com/business/2018/jan/02/eu-bankers-work-around-the-clock-ahead-of-launch-of-mifid-ii-reforms
https://www.theguardian.com/business/2018/jan/02/eu-bankers-work-around-the-clock-ahead-of-launch-of-mifid-ii-reforms
https://www.theguardian.com/commentisfree/2018/jan/03/the-guardian-view-on-the-nhs-winter-crisis-not-such-a-happy-birthday
https://www.theguardian.com/commentisfree/2018/jan/03/the-guardian-view-on-the-nhs-winter-crisis-not-such-a-happy-birthday
https://www.theguardian.com/commentisfree/2018/jan/03/the-guardian-view-on-the-nhs-winter-crisis-not-such-a-happy-birthday
https://techcrunch.com/2018/01/03/instaapp/

[CBRl] https://www.theguardian.com/football/blog/2018/jan/04/

arsene-wenger-referee-paranoia-arsenal-mindset-chelsea

[CBRm] https://www.theguardian.com/world/2018/jan/04/ukraine-

killing-of-rights-lawyer-sparks-protests-against-

criminal-system

[CBRn] https://www.theguardian.com/business/2018/jan/02/good-

factories-bad-shoppers-brexit-pattern-emerging

[CBRo] https://www.theguardian.com/business/2018/jan/03/us-

drug-firm-offers-cure-for-blindness-at-425000-an-eye

[CBRp] https://techcrunch.com/2018/01/03/apple-readies-siri-

for-the-homepod-by-adding-a-podcast-powered-news-

brief/

[CBRq] https://www.theguardian.com/football/2018/jan/04/

jurgen-klopp-philippe-coutinho-liverpool-manchester-

city-barcelona-everton

[CBRr] https://www.washingtonpost.com/news/politics/wp/2018/

01/04/what-weve-learned-about-trumps-campaign-and-

russia-since-trump-first-denied-collusion/?utm_term=

.581f11307330

[CBRs] https://www.theguardian.com/business/2018/jan/02/trump-

tax-cut-to-dent-bp-profits-by-15bn

[CBRt] https://www.theguardian.com/science/2018/jan/03/

alcohol-can-cause-irreversible-genetic-damage-to-stem-

cells-says-study

[CBRu] https://techcrunch.com/2018/01/03/apple-developer-

program-fee-waivers-are-now-available-for-nonprofits-

schools-and-government/

[CBRv] https://www.theguardian.com/football/2018/jan/04/

juventus-confident-signing-emre-can-liverpool

[CBRw] https://www.theguardian.com/us-news/2018/jan/05/donald-

trump-mexico-border-wall-congress-18-billion

[CBRx] https://www.theguardian.com/money/2017/dec/31/hammond-

relying-on-household-debt-to-hit-targets-says-

mcdonnell

https://www.theguardian.com/football/blog/2018/jan/04/arsene-wenger-referee-paranoia-arsenal-mindset-chelsea
https://www.theguardian.com/football/blog/2018/jan/04/arsene-wenger-referee-paranoia-arsenal-mindset-chelsea
https://www.theguardian.com/world/2018/jan/04/ukraine-killing-of-rights-lawyer-sparks-protests-against-criminal-system
https://www.theguardian.com/world/2018/jan/04/ukraine-killing-of-rights-lawyer-sparks-protests-against-criminal-system
https://www.theguardian.com/world/2018/jan/04/ukraine-killing-of-rights-lawyer-sparks-protests-against-criminal-system
https://www.theguardian.com/business/2018/jan/02/good-factories-bad-shoppers-brexit-pattern-emerging
https://www.theguardian.com/business/2018/jan/02/good-factories-bad-shoppers-brexit-pattern-emerging
https://www.theguardian.com/business/2018/jan/03/us-drug-firm-offers-cure-for-blindness-at-425000-an-eye
https://www.theguardian.com/business/2018/jan/03/us-drug-firm-offers-cure-for-blindness-at-425000-an-eye
https://techcrunch.com/2018/01/03/apple-readies-siri-for-the-homepod-by-adding-a-podcast-powered-news-brief/
https://techcrunch.com/2018/01/03/apple-readies-siri-for-the-homepod-by-adding-a-podcast-powered-news-brief/
https://techcrunch.com/2018/01/03/apple-readies-siri-for-the-homepod-by-adding-a-podcast-powered-news-brief/
https://www.theguardian.com/football/2018/jan/04/jurgen-klopp-philippe-coutinho-liverpool-manchester-city-barcelona-everton
https://www.theguardian.com/football/2018/jan/04/jurgen-klopp-philippe-coutinho-liverpool-manchester-city-barcelona-everton
https://www.theguardian.com/football/2018/jan/04/jurgen-klopp-philippe-coutinho-liverpool-manchester-city-barcelona-everton
https://www.washingtonpost.com/news/politics/wp/2018/01/04/what-weve-learned-about-trumps-campaign-and-russia-since-trump-first-denied-collusion/?utm_term=.581f11307330
https://www.washingtonpost.com/news/politics/wp/2018/01/04/what-weve-learned-about-trumps-campaign-and-russia-since-trump-first-denied-collusion/?utm_term=.581f11307330
https://www.washingtonpost.com/news/politics/wp/2018/01/04/what-weve-learned-about-trumps-campaign-and-russia-since-trump-first-denied-collusion/?utm_term=.581f11307330
https://www.washingtonpost.com/news/politics/wp/2018/01/04/what-weve-learned-about-trumps-campaign-and-russia-since-trump-first-denied-collusion/?utm_term=.581f11307330
https://www.theguardian.com/business/2018/jan/02/trump-tax-cut-to-dent-bp-profits-by-15bn
https://www.theguardian.com/business/2018/jan/02/trump-tax-cut-to-dent-bp-profits-by-15bn
https://www.theguardian.com/science/2018/jan/03/alcohol-can-cause-irreversible-genetic-damage-to-stem-cells-says-study
https://www.theguardian.com/science/2018/jan/03/alcohol-can-cause-irreversible-genetic-damage-to-stem-cells-says-study
https://www.theguardian.com/science/2018/jan/03/alcohol-can-cause-irreversible-genetic-damage-to-stem-cells-says-study
https://techcrunch.com/2018/01/03/apple-developer-program-fee-waivers-are-now-available-for-nonprofits-schools-and-government/
https://techcrunch.com/2018/01/03/apple-developer-program-fee-waivers-are-now-available-for-nonprofits-schools-and-government/
https://techcrunch.com/2018/01/03/apple-developer-program-fee-waivers-are-now-available-for-nonprofits-schools-and-government/
https://www.theguardian.com/football/2018/jan/04/juventus-confident-signing-emre-can-liverpool
https://www.theguardian.com/football/2018/jan/04/juventus-confident-signing-emre-can-liverpool
https://www.theguardian.com/us-news/2018/jan/05/donald-trump-mexico-border-wall-congress-18-billion
https://www.theguardian.com/us-news/2018/jan/05/donald-trump-mexico-border-wall-congress-18-billion
https://www.theguardian.com/money/2017/dec/31/hammond-relying-on-household-debt-to-hit-targets-says-mcdonnell
https://www.theguardian.com/money/2017/dec/31/hammond-relying-on-household-debt-to-hit-targets-says-mcdonnell
https://www.theguardian.com/money/2017/dec/31/hammond-relying-on-household-debt-to-hit-targets-says-mcdonnell

[CBRy] https://www.theguardian.com/society/2018/jan/03/

doctors-patients-government-failing-stop-nhs-crisis

[CCFF11] Cacheda, Fidel ; Carneiro, Víctor ; Fernández, Diego ; Formoso, Vreixo:
Comparison of Collaborative Filtering Algorithms: Limitations of Current Tech-
niques and Proposals for Scalable, High-performance Recommender Systems. In:
ACM Trans. Web 5 (2011), Februar, Nr. 1, 2:1–2:33. http://dx.doi.org/
10.1145/1921591.1921593. – DOI 10.1145/1921591.1921593. – ISSN
1559–1131

[CGM+99] Claypool, Mark ; Gokhale, Anuja ; Miranda, Tim ; Murnikov, Pavel ;
Netes, Dmitry ; Sartin, Matthew: Combining Content-Based and Collaborative
Filters in an Online Newspaper. 1999

[DOC] http://www.doctrine-project.org/about.html

[Fox89] Fox, Christopher: A Stop List for General Text. In: SIGIR Forum 24 (1989),
September, Nr. 1-2, 19–21. http://dx.doi.org/10.1145/378881.

378888. – DOI 10.1145/378881.378888. – ISSN 0163–5840

[Gor16] Gorakala, Suresh K. ; Sinha, Manisha (Hrsg.): Building Recommendation
Engines. Packt Publishing, 2016

[JSD] http://www.jamesshore.com/Blog/Dependency-Injection-

Demystified.html

[JZ09] Jia Zhou, Tiejian L.: Towards an Introduction to Collaborative Filtering. In:
International Conference on Computational Science and Engineering (2009)

[Kla09] Klahold, André: Empfehlungssysteme. Vieweg+Teubner, 2009

[Lev14] Levinas, Claudio A.: An Analysis of Memory Based Collaborative Filtering
Recommender Systems with Improvement Proposals, Universitat Politecnica de
Catalunya Barcelonatech, Diplomarbeit, 2014

[LH16] Lenhart, Philip ; Herzog, Daniel: Combining Content-based and Collaborative
Filtering for Personalized Sports News Recommendations. In: CBRecSys@RecSys,
2016

[LS13] Laila Safoury, Akram S.: Exploiting User Demographic Attributes for Solv-
ing Cold-Start Problem in Recommender System. In: Lecture Notes on Software
Engineering 1 (2013), Aug, Nr. 3, S. 303–307

[LSY03] Linden, Greg ; Smith, Brent ; York, Jeremy: Amazon.Com Recommendations:
Item-to-Item Collaborative Filtering. In: IEEE Internet Computing 7 (2003), Jan-
uar, Nr. 1, 76–80. http://dx.doi.org/10.1109/MIC.2003.1167344.
– DOI 10.1109/MIC.2003.1167344. – ISSN 1089–7801

https://www.theguardian.com/society/2018/jan/03/doctors-patients-government-failing-stop-nhs-crisis
https://www.theguardian.com/society/2018/jan/03/doctors-patients-government-failing-stop-nhs-crisis
http://dx.doi.org/10.1145/1921591.1921593
http://dx.doi.org/10.1145/1921591.1921593
http://www.doctrine-project.org/about.html
http://dx.doi.org/10.1145/378881.378888
http://dx.doi.org/10.1145/378881.378888
http://www.jamesshore.com/Blog/Dependency-Injection-Demystified.html
http://www.jamesshore.com/Blog/Dependency-Injection-Demystified.html
http://dx.doi.org/10.1109/MIC.2003.1167344

[MGT86] Malone, T. W. ; Grant, K. R. ; Turbak, F. A.: The Information Lens: An
Intelligent System for Information Sharing in Organizations. In: SIGCHI Bull. 17
(1986), April, Nr. 4, 1–8. http://dx.doi.org/10.1145/22339.22340.
– DOI 10.1145/22339.22340. – ISSN 0736–6906

[MWD] https://martinfowler.com/articles/injection.html

[NC1a] https://nextcloud.com/blog/nextcloud-introducing-

native-integrated-end-to-end-encryption/

[NC1b] https://docs.nextcloud.com/server/12/developer_manual/

app/classloader.html

[NC1c] https://docs.nextcloud.com/server/9/developer_manual/

app/container.html

[NC1d] https://docs.nextcloud.com/server/10/

NextcloudDeveloperManual.pdf

[NC2] https://docs.nextcloud.com/server/12/developer_manual/

general/codingguidelines.html#coding

[NC3] https://docs.nextcloud.com/server/12/developer_manual/

general/codingguidelines.html#general

[NC4] https://docs.nextcloud.com/server/12/developer_manual/

general/codingguidelines.html#user-interface

[NC5] https://docs.nextcloud.com/server/9/developer_manual/

app/hooks.html

[NC6] https://docs.nextcloud.com/server/9/developer_manual/

app/routes.html

[NC7] https://docs.nextcloud.com/server/12/developer_manual/

app/container.html

[NC8] https://docs.nextcloud.com/server/12/admin_manual/

configuration_server/background_jobs_configuration.html

[NC9] https://docs.nextcloud.com

[Nex] Nextcloud: Nextcloud 12 Server Administration Manual - Sys-
tem Requirements¶. https://docs.nextcloud.com/server/12/

admin_manual/installation/system_requirements.html, Abruf:
16.10.2017

http://dx.doi.org/10.1145/22339.22340
https://martinfowler.com/articles/injection.html
https://nextcloud.com/blog/nextcloud-introducing-native-integrated-end-to-end-encryption/
https://nextcloud.com/blog/nextcloud-introducing-native-integrated-end-to-end-encryption/
https://docs.nextcloud.com/server/12/developer_manual/app/classloader.html
https://docs.nextcloud.com/server/12/developer_manual/app/classloader.html
https://docs.nextcloud.com/server/9/developer_manual/app/container.html
https://docs.nextcloud.com/server/9/developer_manual/app/container.html
https://docs.nextcloud.com/server/10/NextcloudDeveloperManual.pdf
https://docs.nextcloud.com/server/10/NextcloudDeveloperManual.pdf
https://docs.nextcloud.com/server/12/developer_manual/general/codingguidelines.html#coding
https://docs.nextcloud.com/server/12/developer_manual/general/codingguidelines.html#coding
https://docs.nextcloud.com/server/12/developer_manual/general/codingguidelines.html#general
https://docs.nextcloud.com/server/12/developer_manual/general/codingguidelines.html#general
https://docs.nextcloud.com/server/12/developer_manual/general/codingguidelines.html#user-interface
https://docs.nextcloud.com/server/12/developer_manual/general/codingguidelines.html#user-interface
https://docs.nextcloud.com/server/9/developer_manual/app/hooks.html
https://docs.nextcloud.com/server/9/developer_manual/app/hooks.html
https://docs.nextcloud.com/server/9/developer_manual/app/routes.html
https://docs.nextcloud.com/server/9/developer_manual/app/routes.html
https://docs.nextcloud.com/server/12/developer_manual/app/container.html
https://docs.nextcloud.com/server/12/developer_manual/app/container.html
https://docs.nextcloud.com/server/12/admin_manual/configuration_server/background_jobs_configuration.html
https://docs.nextcloud.com/server/12/admin_manual/configuration_server/background_jobs_configuration.html
https://docs.nextcloud.com
https://docs.nextcloud.com/server/12/admin_manual/installation/system_requirements.html
https://docs.nextcloud.com/server/12/admin_manual/installation/system_requirements.html

[NP13] Nikolaos Polatidis, Christos K. G.: Mobile recommender systems: An
overview of technologies and challenges. In: Second International Conference on
Informatics & Applications (ICIA) (2013), Sept

[Paz99] Pazzani, Michael J.: A Framework for Collaborative, Content-Based and De-
mographic Filtering. In: Artif. Intell. Rev. 13 (1999), Dezember, Nr. 5-6,
393–408. http://dx.doi.org/10.1023/A:1006544522159. – DOI
10.1023/A:1006544522159. – ISSN 0269–2821

[PB07] Pazzani, Michael J. ; Billsus, Daniel: Content-based recommendation systems.
In: THE ADAPTIVE WEB: METHODS AND STRATEGIES OF WEB PERSON-
ALIZATION. VOLUME 4321 OF LECTURE NOTES IN COMPUTER SCIENCE,
Springer-Verlag, 2007, S. 325–341

[PG14] Polatidis, Nikolaos ; Georgiadis, Christos K.: Mobile recommender systems:
An overview of technologies and challenges. In: CoRR abs/1408.6930 (2014).
http://arxiv.org/abs/1408.6930

[PHPa] http://php.net/manual/en/language.oop5.autoload.php

[PHPb] http://www.php-fig.org/psr/psr-4/

[PHPc] PHP: PHP 7.0.0 Release Announcement. http://php.net/releases/7_
0_0.php, Abruf: 16.10.2017

[PR94] Paul Resnick, Mitesh Suchak Peter Bergstrom John R. Neophytos Iacovou I.
Neophytos Iacovou: GroupLens: An Open Architecture for Collaborative Filtering
of Netnews. In: Proceedings of ACM 1994 Conference on Computer Supported
Cooperative Work, Chapel Hill (1994)

[SKKR01] Sarwar, Badrul ; Karypis, George ; Konstan, Joseph ; Riedl, John: Item-
based Collaborative Filtering Recommendation Algorithms. In: Proceedings of the
10th International Conference on World Wide Web. New York, NY, USA : ACM,
2001 (WWW ’01). – ISBN 1–58113–348–0, 285–295

[SM95] Shardanand, Upendra ; Maes, Pattie: Social Information Filtering: Algorithms
for Automating &Ldquo;Word of Mouth&Rdquo;. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. New York, NY, USA : ACM
Press/Addison-Wesley Publishing Co., 1995 (CHI ’95). – ISBN 0–201–84705–1,
210–217

[SYM] https://symfony.com/doc/current/routing.html

http://dx.doi.org/10.1023/A:1006544522159
http://arxiv.org/abs/1408.6930
http://php.net/manual/en/language.oop5.autoload.php
http://www.php-fig.org/psr/psr-4/
http://php.net/releases/7_0_0.php
http://php.net/releases/7_0_0.php
https://symfony.com/doc/current/routing.html

	Introduction
	Background
	Motivation
	Objectives of this Work
	Scientific Context
	About Nextcloud
	Accessibility
	Outline

	Requirements Analysis
	Problem Definition
	General Conditions
	Milestones
	Functional Requirements
	Relation to Machine Learning
	Input & Output
	Data Processing
	Recommendations

	Non-Functional Requirements
	Software Quality
	Privacy and Legal Aspects
	Performance
	Usability
	Portability
	Supportability
	Extensibility
	Transparency

	Requirements Matrix
	Software Architecture and Design
	Nextcloud Architecture
	Nextcloud App Architecture

	State of the Art
	Introduction
	Collaborative Filtering
	Introduction
	Formal Definition
	Memory-Based Collaborative Filtering
	Model-Based Collaborative Filtering

	Content-Based Recommendation
	Introduction
	Formal Definition
	Stopword Removal and Stemming
	Degree of Match

	Other Filtering Techniques
	Kowledge-Based Filtering
	Demographic Filtering

	Hybridization
	Weighted Average
	Switching
	Mixing
	Feature Combination
	Cascading
	Model Using
	Monolithic
	Pipelining

	Reasons for Methods Chosen
	Collaborative Filtering
	Content-Based Recommendation
	Hybridization

	Implementation
	Introduction
	General App Architecture
	PSR-4 Autoloading
	Dependency Injection

	Nextcloud App Architecture
	RecommenderJob
	TimedJob
	RecommenderService
	Reading File Content
	Favorites
	TU Berlin Statistics
	Item
	ItemList
	Keyword
	KeywordList
	HybridItem
	HybridList
	Interface IComputable
	Interface IContentReader

	Collaborative Filtering Implementation
	User Ratings
	CosineComputer

	Content-Based Recommendation Implementation
	User Profile
	Reading File Content
	Term Frequency / Inverse Document Frequency
	OverlapCoefficientComputer

	Hybridization
	HybridItem
	HybridList

	Database Storage
	Doctrine Framework
	Table Creation and Access

	Evaluation
	Introduction
	Test Environment

	Evaluation Based on Static Tags
	Evaluation Based on Modifications Timestamps
	Content Based Recommendation
	Collaborative Filtering

	Graphical User Interface
	Defining Weights and Thresholds
	Threshold
	Weights

	Relation to Accessibility
	Introduction
	Recommender Systems in the Context of Accessiblity

	Conclusion
	Summary
	Results
	Future Work

